BASEBAND PULSE
TRANSMISSION

This chapter discusses the transmission of digital data over a baseband channel, with
emphasis on the following topics:

» The matched filter, which is the optimum system for detecting a known signal in additive
white Gaussian notse.

» Calculation of the bit error rate due to the presence of channel noise.

W Iutersymbol interference, which arises when the channel is dispersive as is commonly the
case in practice.

» Nyguist’s criterion for distortionless baseband data transmission.

» Correlative-level coding or partial-response signaling for combatting the effects of
intersymbol interference.

» Digital subscriber lines.
W Equalization of a dispersive baseband channel.

P The eye pattern for displaying the combined effects of intersymbol interference and
channel noise in data transmission.

E 4.1 Imtroduction

In Chapter 3 we described techniques for converting an analog information-bearing signal
into digital form. There is another way in which digital data can arise in practice: The
data may represent the output of a source of information that is inherently discrete in
nature {e.g., a digital computer). In this chapter we study the transmission of digital data
(of whatever origin} over a baseband channel.! Data transmission over a band-pass channel
using modulation is covered in Chapter 6.

Digital data have a broad spectrum with a significant low-frequency content. Base-
band transmission of digital data therefore requires the use of a low-pass channel with a
bandwidth large enough to accommodate the essential frequency content of the data
stream. Typically, however, the channel is dispersive in that its frequency response deviates
from that of an ideal low-pass filter. The result of data transmission over such a channel
is that each received pulse is affected somewhat by adjacent pulses, thereby giving rise to
a common form of interference called intersymbol interference (ISI). Intersymbol interfer-
ence is a major source of bit errors in the reconstructed data stream at the receiver output,
To correct for it, control has to be exercised over the pulse shape in the overall system.
Thus much of the material covered in this chapter is devoted to pulse shaping in one form
or another,
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Another source of bit errors in a baseband data transmission system is the ubiquit(,us
channel noise. Naturally, noise and ISI arise in the system simultancously. However, 1,
understand how they affect the performance of the system, we first consider them sep,.
rately; later on in the chapter, we study their combined effects.

We thus begin the chapter by describing a fundamental result in communicatigy,
theory, which deals with the detection of a pulse signal of known waveform that ig j.
mersed in additive white noise. The device for the optimum detection of such a puy]g,
involves the use of a linear-time-invariant filter known as a matched filter,* which is g,
called because its impulse response is matched to the pulse signal.

4.2 Matched Filter

A basic problem that often arises in the study of communication systems is that of detecting
a pulse transmitted over a channel that is corrupted by channel noise (i.e., additive noise
at the front end of the receiver). For the purpose of the discussion presented in this section,
we assume that the major source of system limitation is the channel noise.

Consider then the receiver model shown in Figure 4.1, involving a linear time-inva.
jant filter of impulse response A{t). The filter input x(z) consists of a pulse signal g{y)
corrupted by additive channel noise w(t), as shown by

x(t) = g(t) + w(t), 0<t=<T (4.1)

where T is an arbitrary observation interval. The pulse signal g(¢) may represent a binary
symbol 1 or 0 in a digital communication system. The w/(t) is the sample function of a
white noise process of zero mean and power spectral density Np/2. It is assumed that the
receiver has knowledge of the waveform of the pulse signal g(t). The source of uncertainty
lies in the noise w(z). The function of the receiver is to detect the pulse signal g(£) in an
optimum manner, given the received signal x(z). To satisfy this requirement, we have to
optimize the design of the filter so as to minimize the effects of noise at the filter output
in some statistical sense, and thereby enhance the detection of the pulse signal g(2).
Since the filter is linear, the resulting output y(t) may be expressed as

(1) = g.(f) + nit) (4.2)

where g.(t) and #(t) are produced by the signal and noise components of the input x(t),
respectively. A simple way of describing the requirement that the output signal component
2.(t) be considerably greater than the output noise component #(t) is to have the filter
make the instantaneous power in the output signal g.(t), measured at time ¢t = T, as large
as possible compared with the average power of the output noise #(). This is equivalent
to maximizing the peak pulse signal-to-noise ratio, defined as

n = |g0(T)|2 (43)
E[#3(1)] |
. Linear time-
Signal 0 | invariant fitter of | ¥ ST
£ impulse respense °
B} Sample at
timet =T

White noise
wit}

FiGURE 4.1 Linear receiver.
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where |g,(T)|? is the instantaneous power in the output signal, E is the statistical expec-
tation operator, and E[n*(#)] is 2 measure of the average output noise power. The require-
ment is to specify the impulse response k{t) of the filter such that the output signal-to-
noise ratio in Equation (4.3) is maximized.

Let G(f) denote the Fourier transform of the known signal g(¢), and H(f) denote
the frequency response of the filter. Then the Fourier transform of the output signal g,(z)
is equal to H(f)G(f), and g, (#) is itself given by the inverse Fourier transform

&) = | HUNG(P) expliznfs) df (4.4)

Hence, when the filter output is sampled at time ¢ = T, we have {in the absence of channel
noise)
2

12 = || HG() explianfT) df (4.5)

Consider next the effect on the filter output due to the noise w/(t) acting alone. The
power spectral density Sx(f) of the output noise #(t) is equal to the power spectral density
of the input noise w/(z) times the squared magnitude response |H(f)[? (see Section 1.7).
Since w/(t) is white with constant power spectral density Ny/2, it follows that

Sxif) = = [H(H)|? (4.6)

The average power of the output noise #(¢) is therefore

-]

E[n*@)] = | Sxlf) df

_No [T
=2 [ Bl af

Thus substituting Equations (4.5) and (4.7) into (4.3}, we may rewrite the expression
for the peak pulse signal-to-noise ratio as

(4.7)

2

| G explizarT) df

= _ (4.8)
e [ imipi s

Our problem is to find, for a given G(f), the particular form of the frequency response
H(f) of the filter that makes 5 a maximum. To find the solution to this optimization
problem, we apply a mathematical result known as Schwarz’s inequality to the numerator
of Equation (4.8).

A derivation of Schwarz’s inequality is given in Chapter 5. For now it suffices to say
that if we have two complex functions ¢ ,(x) and ¢ ,(x) in the real variable x, satisfying
the conditions

f_m |p1(x)|? dx < =

and

.(_m | ¢2(x)]? dx <
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then we may write
2

[" oumsatnt a| = [ loui de | 1ol de s,

The equality in {4.9) holds if, and only if, we have
¢1(x} = k3 (x) (4.10)

where & is an arbitrary constant, and the asterisk denotes complex conjugation.

Returning to the problem at hand, we readily see that by invoking Schwarz’s j,.
equality (4.9), and setting ¢ 4(x) = H(f) and ¢,(x) = G(f) exp(j7fT), the numerator jp,
Equation (4.8) may be rewritten as - '

5L |H(f)|? df L |GHI*df a1y

2

j_w H{(f)G(f) exp(i2mfT) df

Using this relation in Equation (4.8), we may redefine the peak pulse signal-to-noise ratjg
as

n== | lepdr o

| No = '

The right-hand side of this relation does not depend on the frequency response H(f) of
the filter but only on the signal energy and the noise power spectral density. Consequently,
the peak pulse signal-to-noise ratio n will be a maximum when H(f) is chosen so that the
equality holds; that is,

2 - 2
o = 5 |__|GU 2 f 41

Correspondingly, H(f) assumes its optimum value denoted by H,,{f}. To find this opti-
mum value we use Equation (4.10), which, for the situation at hand, yields

Hoplf) = RG*(f) exp(—j27fT) (4.14)

where G*(f) is the complex conjugate of the Fourier transform of the input signal git),
and k is a scaling factor of appropriate dimensions. This relation states that, except for
the factor k exp(—j2@fT), the frequency response of the optimum filter is the same as the
complex conjugate of the Fourier transform of the input signal.

Equation (4.14) specifies the optimum filter in the frequency domain. To characterize
it in the time domain, we take the inverse Fourier transform of H,,.(f} in Equation (4.14)
to obtain the impulse response of the optimum filter as

bt = k | G¥(f) expl=2mf(T — 1) df (419

Since for a real signal g(t) we have G*(f) = G(—f), we may rewrite Equation (4.15) a8

boslt) = & | G(=f) expl—j2mf(T = 1] df

=k | G exp lizmf(T = 0} df (41

= kg(T — 1)

Equation (4.16) shows that the impulse response of the optimum flter, except fOI_ th.e
scaling factor k, is a time-reversed and delayed version of the input signal g(z); that % t
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is “matched” to the input signal. A linear time-invariant filter defined in this way is called
a matched filter. Note that in deriving the matched filter the only assumption we have
made about the input noise w(#) is that it is stationary and white with zero mean and
power spectral density Ny/2. In other words, no assumption was made on the statistics of
the channel noise t(t).

= PROPERTIES OF MATCHED FILTERS

We note that a filter, which is matched to a pulse signal g(t) of duration T, is characterized
by an impulse response that is a time-reversed and delayed version of the input g(z), as
shown by

hop(t) = kg(T — t)

In other words, the impulse response b,,.(¢) is uniquely defined, except for the delay T and
-the scaling factor k, by the waveform of the pulse signal g(£) to which the filter is matched.
In the frequency domain, the matched filter is characterized by a frequency response that
is, except for a delay factor, the complex conjugate of the Fourier transform of the input
g(t), as shown by

Howlf) = kG*(f) exp(—/2nfT)
The most important result in the calculation of the perforrnance of signal processing sys-
tems using matched filters is perhaps the following:

The peak pulse signal-to-noise ratio of a matched filter depends only on the ratio of the
signal energy to the power spectral density of the white noise at the filter input.

To demonstrate this property, consider a filter matched to a known signal g{¢). The Fourier
transform of the resulting matched filter output g.(z) is

Golf) = Hopl fIG(S)
= kG*(f)G(f) exp(~j2mfT) (4.17)
= k|G(f)|* exp(—j27fT)

Using Equation (4.17) in the formula for the inverse Fourier transform, we find that the
matched filter output at time ¢ = T is

= | Gul) explizafT) df
k[ _lapldr

According to Rayleigh’s energy theorem, the integral of the squared magnitude spectrum
of a pulse signal with respect to frequency is equal to the signal energy E:

E- | gww=[ |aplas

Hence
g,{T) = kE _ (4.18)
Substituting Equation (4.14) into (4.7), we find that the average output noise power is
2
Epn] = S [ (ip)2 df
2 (4.19)

= k’NoE/2
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where again we have made use of Rayleigh’s energy theorem. Therefore, the peak Pulse
signal-to-noise ratio has the maximum value

__(REF _2E
Tmax = (RENGE/2) N .20

From Equation (4.20) we see that dependence on the waveform of the input g{¢) has beg,
completely removed by the matched filter. Accordingly, in evaluating the ability of ,
matched-filter recciver to combat additive white noise, we find that all signals that hay,
the same energy are equally effective. Note that the signal energy E is in joules and t},
noise spectral density No/2 is in watts per Hertz, so that the ratio 2E/N, is dimensionlegs,
however, the two quantities have different physical meaning. We refer to E/Nj as the sg‘gnai
energy-to-noise spectral density ratio.

b ExamPLE 4.1 Matched Filter for Rectangular Pulse

Consider a signal g(#) in the form of a rectangular pulse of amplitude A and duration T, 4
shown in Figure 4.2a. In this example, the impulse response h(t) of the matched filter hag
exactly the same waveform as the signal itself. The output signal g,(z) of the matched filte;
produced in response to the input signal g{#) has a triangular waveform, as shown in Figure
4.2b. '

The maximum value of the output signal g.(t) is equal to #A*T, which is the energy of
the input signal g(#) scaled by the factor &; this maximum value occurs at £ = T, as indicated
in Figure 4.26.

2l

A
Energy = A2T
H
0 T
(a)
Matched filter
output g,{n
KA ——————
|
|
' ¢
0 T
- {b)
Qutput of
integrate-and-dump
circuit
AT [ m——— —
t
0 T

()

FiGURE 4.2 (a) Rectangular pulse. (b) Matched filter output. (¢) Integrator output.
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Recpti?sgeuiar ——z=  Integrator O\C >
Sampie at
timer=T

FIGURE 4.3 Integrate-and-dump circuit.

For the special case of a rectangular pulse, the matched filter may be implemented using
a circuit known as the integrate-and-dump circuit, a block diagram of which is shown in
Figure 4.3. The integrator computes the area under the rectangular pulse, and the resulting
output is then sampled at time ¢ = T, where T is the duration of the pulse. Immediately after
t = T, the integrator is restored to its initial condition; hence the name of the circuit. Figure
4.2¢ shows the output waveform of the integrate-and-dump circuit for the rectangular pulse
of Figure 4.2a. We see that for 0 < t =< T, the output of this circuit has the same waveform
as that appearing at the output of the matched filter; the difference in the notations used to
describe their peak values is of no practical significance. &4

"L4.3 Error Rate Due to Noise

In Section 3.8 we presented a qualitative discussion of the effect of channel noise on the
performance of a binary PCM system. Now that we are equipped with the matched filter
as the optimum detector of a known pulse in additive white noise, we are ready to derive
a formula for the error rate in such a system due to noise.

To proceed with the analysis, consider a binary PCM system based on polar non-
return-to-zero (NRZ) signaling. In this form of signaling, symbols 1 and 0 are represented
by positive and negative rectangular pulses of equal amplitude and equal duration. The
channel noise is modeled as additive white Gaussian noise w(t) of zero mean and power
spectral density Ny/2; the Gaussian assumption is needed for later calculations. In the
signaling interval 0 = ¢t = T}, the received signal is thus written as follows:

() = {-I—A + wit), symbol 1 was sent (4.21)

—A + w(t), symbol 0 was sent

where T, is the bit duration, and A is the transmitted pulse amplitude. It is assumed that
the receiver has acquired knowledge of the starting and ending times of each transmitted
pulse; in other words, the receiver has prior knowledge of the pulse shape, but not its
polarity. Given the noisy signal x(z), the receiver is required to make a decision in each
signaling interval as to whether the transmiited symbolisa 1 or a 0.

The structure of the receiver used to perform this decision-making process is shown
in Figure 4.4. It consists of a matched filter followed by a sampler, and then finally a

PcMwave __* | Matched o Decision > Say Lify >4
s{r} filter i device if v
+ ] Sample at e Say O if y <A
time r =T T
White Gaussian Threshold
noise wiz} A

FIGURE 4.4 Receiver for baseband transmission of binary-encoded PCM wave using polar NRZ
signaling.
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decision device. The filter is matched to a rectangular pulse of amplitude A and duration
T, exploiting the bit-timing information available to the receiver. The resulting matc}, a
filter output is sampled at the end of each signaling interval. The presence of channel g,
w(t) adds randomness to the matched filter output.

Let y denote the sample value obtained at the end of a signaling interval. The sample
value y is compared to a preset threshold A in the decision device. If the threshold
exceeded, the receiver makes a decision in favor of symbol 1; if not, a decision is made j;
favor of symbol 0. We adopt the convention that when the sample value y is exactly eqy,|
to the threshold A, the receiver just makes a guess as to which symbol was transmitteq.
such a decision is the same as that obtained by flipping a fair coin, the outcome of Whicﬂ
will not alter the average probability of error.

There are two possible kinds of error to be considered:

1. Symbol 1 is chosen when a 0 was actually transmitted; we refer to this error as gy
error of the first kind.

2. Symbol 0 is chosen when a 1 was actually transmitted; we refer to this error as ap
error of the second kind. :

To determine the average probability of error, we consider these two situations separately,
Suppose that symbol 0 was sent. Then, according to Equation (4.21), the received
signal is

x(t) = —A + w(t), 0=t=T, (422

Correspondingly, the matched filter output, sampled at time ¢ = T}, is given by (in light
of Example 4.1 with 2AT), set equal to unity for convenience of presentation)

Ty
y = L x(t} dt
1 (T (4.23)

=-A+-T—b . w(t) dt

which represents the sample value of a random variable Y. By virtue of the fact that the
noise w/(t) is white and Gaussian, we may characterize the random variable Y as follows:

¢ The random variable Y is Gaussian distributed with a mean of —A.
# The variance of the random variable Y is

o} = EI(Y + AY]
= ;‘17; EI:L b _L ’ w(tyw(u) dt du]
Tp

1

T% Jo
1 Ty Ty

T% Jo

(4.24}
Elw(t)w{u)] dt du

Ryit, u) dt du

where Rydt, #) is the antocorrelation function of the white noise w/(t). Since w(t} is white
with a power spectral density Ny/2, we have

No st — ) (4.29)

Ry (t, u) = =
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a 3-dB increase in E,/ N, is much easier to implement when E, has a small value than when
its value is orders of magnitude larger.

Li'i Intersymbol Interference

Input
binary
data

The next source of bit errors in a baseband-pulse transmission system that we wish to
study is intersymbol interference (ISI), which arises when the communication channel is
dispersive. First of all, however, we need to address a key question: Given a pulse shape
of interest, how do we use it to transmit data in M-ary form? The answer lies in the use
of discrete pulse modulation, in which the amplitude, duration, or position of the trans-
mitted pulses is varied in a discrete manner in accordance with the given data stream.
However, for the baseband transmission of digital data, the use of discrete pulse-amplitude
modulation (PAM) is one of the most efficient schemes in terms of power and bandwidth
utilization. Accordingly, we confine our attention to discrete PAM systems. We begin the
study by first considering the case of binary data; later in the chapter, we consider the
more general case of M-ary data.

Consider then a baseband binary PAM system, a generic form of which is shown in
Figure 4.7, The incoming binary sequence {;} consists of symbols 1 and 0, each of du-
ration Tj. The pulse-amplitude modulator modifies this binary sequence into a new se-
quence of short pulses (approximating a unit impulse), whose amplitude 4, is represented
in the polar form

4 = {+1 if symbol b, is 1 (4.42)

-1 if symbol b, is 0

The sequence of short pulses so produced is applied to a transmit filter of impulse response
g(2), producing the transmitted signal

s(t) = ; apglt — kT,) (4.43)

The signal s(t) is modified as a result of transmission through the channel of impulse
response 4(t). In addition, the channel adds random noise to the signal at the receiver
input. The noisy signal x(¢) is then passed through a receive filter of impulse response ¢(z).
The resulting filter output y(t) is sampled synchronously with the transmitter, with the
sampling instants being determined by a clock or timing signal that is usually extracted
from the receive filter output. Finally, the sequence of samples thus obtained is used to
reconstruct the original data sequence by means of a decision device. Specifically, the
amplitude of each sample is compared to a threshold A. If the threshold A is exceeded, a
decision is made in favor of symbol 1. If the threshold A is not exceeded, a decision is made
in favor of symbol 0. If the sample amplitude equals the threshold exactly, the flip of a

filter

Pulse- {m,} | Transmit {5 Xt} P10) Receive ¥(1) »le) ————1_) Say 1 Hy(r) >
"’Iplitude k;: filter Channel, | 70 fff\ o\c i’ | Decision i

by} madulator £t Hal \f/ ey Sample at device 2 Say 0 if y(5;} <A
T time t = J'Tb T
White
Cleck Gaussian Threshold A
Pulses naise w{f)
e Transmitter te Channel o Receiver

FIGURE 4.7 Baseband binary data transmission system.
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fair coin will determine which symbol was transmitted (i.e., the receiver simply makeg ,
random guess).
The receive filter output is written as

w0 = w3 aplt = kTo) + () | (44

where u is a scaling factor, and the pulse p(¢) is to be defined. To be precise, an arbitr,
time delay 7, should be included in the argument of the pulse p(t — £T,) in Equation (4.44)
to represent the effect of transmission delay through the system. To simplify the €XPOsition,
we have put this delay equal to zero in Equation (4.44) without loss of generality.

The scaled pulse up(t) is obtained by a double convolution involving the impuly,
response g(t) of the transmit filter, the impulse response h(t) of the channel, and the impy|g
response ¢(t) of the receive filter, as shown by

up(t) = g(t) J hit) * c(f) (4.45)
where the star denotes convolution. We assume that the pulse p(t) is normalized by setting
p(0) =1 (4.46)

which justifies the use of w as a scaling factor to account for amplitude changes incurred
in the course of signal transmission through the system.

Since convolution in the time domain is transformed into multiplication in the fre.
quency domain, we may use the Fourier transform to change Equation {4.45) into the
equivalent form '

wP(f) = G(FIH(F)CIF) (4.47)

where P(f), G(f), H(f), and C(f) are the Fourier transforms of p(t), g(¢), h(t), and c(t),
respectively. '

Finally, the term n(¢) in Equation (4.44) is the noise produced at the output of the
receive filter due to the channel noise wit). It is customary to model 2/(t) as a white Gaus-
sian noise of zero mean.

The receive filter output (¢} is sampled at time #; = T, (with 7 taking on integer
values), yielding [in light of Equation (4.46)]

yit) = 2, awplli — BT,)+ nlt)
e (4.48)
= pa; + p kE aplli— B)T] + n(t)

ki
In Equation (4.48), the first term pa; represents the contribution of the ith transmitted bit.
The second term represents the residual effect of all other transmitted bits on the decoding
of the ith bit; this residual effect due to the occurrence of pulses before and after the
sampling instant ¢, is called intersymbol interference (ISI). The last term 7(t;) represents the
noise sample at time 2,.
In the absence of both ISI and noise, we observe from Equation (4.48) that

y(E) = pa
which shows that, under these ideal conditions, the ith transmitted bit is decoded correctly.
The unavoidable presence of ISI and noise in the system, however, introduces errots in t.he
decision device at the receiver output. Therefore, in the design of the transmit and receive

filters, the objective is to minimize the effects of noise and ISI and thereby deliver the digt
data to their destination with the smallest error rate possible.
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When the signal-to-noise ratio is high, as is the case in a telephone system, for ex-
ample, the operation of the system is largely limited by ISI rather than noise; in other
words, we may ignore #(f;). In the next couple of sections, we assume that this condition
holds so that we may focus our attention on ISI and the techniques for its control. In
particular, the issue we wish to consider is to determine the pulse waveform p(z) for which
the ISI is completely eliminated.

| Baseband Binary Transmission

Ijj Nyquist’s Criterion for Distortionless

Typically, the frequency response of the channel and the transmitted pulse shape are spec-
ified, and the problem is to determine the frequency responses of the transmit and receive
filters so as to reconstruct the original binary data sequence {#,}. The receiver does this by
extracting and then decoding the corresponding sequence of coefficients, {4;}, from the
output y(t). The extractiorn involves sampling the output y(t) at time ¢ = iT,. The decoding
requires that the weighted pulse contribution a,p(¢T, — kT,} for k = i be free from ISI
due to the overlapping tails of all other weighted pulse contributions represented by & # 4.
This, in turn, requires that we control the overall pulse p(t), as shown by

1, i=k

0, i*k @4

p(iT, — kT;) = {
where p(0) = 1, by normalization. If p(t) satisfies the conditions of Equation {4.49), the
receiver output y(z;) given in Equation (4.48) simplifies to (ignoring the noise term)

y(t) = pa; for all ¢

which implies zero intersymbol interference. Hence, the two conditions of Equation (4.49)
ensure perfect reception in the absence of noise.

From a design point of view, it is informative to transform the conditions of Equation
(4.49) into the frequency domain. Consider then the sequence of samples {p{nT,)}, where
n=0,*1, =2, +--, From the discussion presented in Chapter 3 on the sampling process,
we recall that sampling in the time domain produces periodicity in the frequency domain.
In particular, we may write |

= R, 2 P(f — nR,) {(4.50)
where R, = 1/T, is the bit rate in bits per second (b/s); Ps(f) is the Fourier transform of
an infinite periodic sequence of delta functions of period T, whose individual areas are
weighted by the respective sample values of p(¢). That is, P4(f} is given by

Psf) = fw 2 |p(mT,) 8t — mTy)] exp(mjzirft) dt (4.51)

Let the integer #n = i — k. Then, i = k corresponds to # = O, and likewise 7 # k corresponds
to m # 0. Accordingly, imposing the conditions of Equation {4.49) on the sample values
of p(t) in the integral of Equation (4.51), we get

f p{0} 8(t) exp{—j2mft) dt
: (4.52)
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where we have made use of the sifting property of the delta function. Since from Equatig,
(4.46) we have p(0) = 1, it follows from Equations (4.50) and {4.52) that the conditig
for zero intersymbol interference is satisfied if

> P(f—nRy) =T, (4.53

We may now state the Nyquist criterion® for distortionless baseband transmission i

the absence of noise: The frequency function P(f) eliminates intersymbol interference f,,

samples taken at intervals Ty, provided that it satisfies Equation (4.33). Note that p(f)

refers to the overall system, incorporating the transmit filter, the channel, and the recejy,
filter in accordance with Equation (4.47).

& IDEAL NYQUIST CHANNEL

The simplest way of satisfying Equation (4.53) is to specify the frequency function P(f) tq
be in the form of a rectangular function, as shown by

1
P(f) = 1 3% —W<f<W
0, FiEdd (4.54
1 f
= ﬁrect(zﬁ;)

where rect(f) stands for a rectangular function of unit amplitude and unit support centered
on f = 0, and the overall system bandwidth W is defined by

Ry _ 1

According to the solution described by Equations (4.54) and (4.55), no frequencies of
absolute value exceeding half the bit rate are needed. Hence, from Fourier-transform pair
2 of Table A6.3 we find that a signal waveform that produces zero intersymbol interference
is defined by the sinc function:

_ sin{27Wr)
27Wt (4.56)
= sin¢(2 Wt}

The special value of the bit rate R, = 2W is called the Nyquist rate, and W is irself
called the Nyquist bandwidth. Correspondingly, the ideal baseband pulse Transmission,
system described by Equation (4.54) in the frequency domain or, equivalently, Equation
(4.56) in the time domain, is called the ideal Nyquist channel.

Figures 4.8 and 4.8b show plots of P(f) and p(¢), respectively. In Figure 4.8, the
normalized form of the frequency function P(f) is plotted for positive and negative fre-
quencies. In Figure 4.8b, we have also included the signaling intervals and the correspond-
ing centered sampling instants. The function p(¢) can be regarded as the impulse responsé
of an ideal low-pass filter with passband magnitude response 1/2W and bandwidth W
The function p(t) has its peak value at the origin and goes through zero at integer multiples
of the bit duration T,. It is apparent that if the received waveform y(z) is sampled at the
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FIGURE 4.8 (a} Ideal magnitude response. (b) Ideal basic pulse shape.

instants of time ¢ = 0, *T,, *2T,, -, then the pulses defined by up(t — iT,) with
arbitrary amplitude g and index i = 0, +1, =2, - -+, will not interfere with each other.
This condition is illustrated in Figure 4.9 for the binary sequence 1011010.

Although the use of the ideal Nyquist channel does indeed achieve economy in band-
width in that it solves the problem of zero intersymbol interference with the minimum

Amplitude

Binarysequence 1 0 1 1 Q0 1 0

0 2 4 6 8 10 12
Time

FIGURE 4.9 A series of sinc pulses corresponding to the sequence 1011010.
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bandwidth possible, there are two practical difficulties that make it an undesirable objeg
tive for system design:

1. It requires that the magnitude characteristic of P(f) be flat from —Wto W, and 5,
elsewhere. This is physically unrealizable because of the abrupt transitions a¢ g,
band edges = W.

2. The function p(t) decreases as 1/|t| for large |¢|, resulting in a slow rate of decyy
This is also caused by the discontinuity of P(f) at = W. Accordingly, there is Prac:
tically no margin of error in sampling times in the receiver.

To evaluate the effect of this timing error, consider the sample of y(z) at t = 4,
where Af is the timing error. To simplify the exposition, we may put the correct Sampfiné
time #; equal to zero. In the absence of noise, we thus have (from Equation (4.48))

y(At) = u % arp(At — kTy)

L g S2TWAL = AT 1457
Hga % T2 nW (AL — kT,)
Since 2WT,, = 1, by definition, we may rewrite Equation {4.57) as
_ ) u sin(27wW At) (—1)%a,
y(At) = pag sinc(2W At) + — Ek: W Ar - B) (4.58)

k0

The first term on the right-hand side of Equation (4.58) defines the desired symbol, whereas
the remaining series represents the intersymbol interference caused by the timing error At
in sampling the output ¥(z). Unfortunately, it is possible for this series to diverge, thereby
causing erroneous decisions in the receiver.

g RAiISED COSINE SPECTRUM

We may overcome the practical difficulties encountered with the ideal Nyquist channel by
extending the bandwidth from the minimum value W = R,/2 to an adjustable value be-
tween W and 2W. We now specify the overall frequency response P(f) to satisfy a cor-
dition more elaborate than that for the ideal Nyquist channel; specifically, we retain three
terms of Equation (4.53) and restrict the frequency band of interest to [— W, W], as shown
by

1
P(fy + P(f — 2W) + P(f+2W)=ﬁ, W= f=W (4.59)
We may devise several band-limited functions that satisfy Equation (4.59). A particular
form of P(f) that embodies many desirable features is provided by a raised cosine spectri.
This frequency response consists of a flat portion and a rolloff portion that has a sinusoidal

form, as follows:

1
W’ | 0= |fl<fi
=41 [ falf] = W) _ _ (4.60
(f) 4W{1 s1n[2W_2fliH, fi=s|fl<2W-f
0, | fl=2W - fi
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The frequency parameter f; and bandwidth W are related by

a=1- % (4.61)

The parameter « is called the rolloff factor; it indicates the excess bandwidth over the
ideal solution, W. Specifically, the transmission bandwidth By is defined by

Br =2W - f,
= W1 + a)

The frequency response P(f), normalized by multiplying it by 2W, is plotted in Figure
4.104 for three values of a, namely, 0, 0.5, and 1. We see that for & = 0.5 or 1, the

2WP(f)
1.0

0.8

0.6

0.4

i,

{b)

FIGURE 4.10 Responses for different rolloff factors. (a) Frequency response. (b) Time response.
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function P(f) cuts off gradually as compared with the ideal Nyquist channel (i.e., a =
and is therefore easier to implement in practice. Also the function P(f) exhibits odd Sy
metry with respect to the Nyquist bandwidth W, making it possible to satisfy the conditig,
of Equation (4.59).

The time response p(¢) is the inverse Fourier transform of the frequency respopg,
P(f). Hence, using the P(f) defined in Equation (4.60), we obtain the result (see Probley
4.13)

2maW,
ple) = (sincr:aw:))(lcfs(l 6“;‘2W?t2) (46

which is plotted in Figure 4.10b for & = 0, 0.5, and 1.

The time response p{t) consists of the product of two factors: the factor sinc{2 Wy
characterizing the ideal Nyquist channel and a second factor that decreases as 1/|z| fy
large | #|. The first factor ensures zero crossings of p(t) at the desired sampling instants of
time ¢# = 7T with i an integer (positive and negative). The second factor reduces the tajlg
of the pulse considerably below that obtained from the ideal Nyquist channel, so that the
transmission of binary waves using such pulses is relatively insensitive to sampling time
errors. In fact, for @ = 1 we have the most gradual rolloff in that the amplitudes of the
oscillatory tails of p{t) are smallest. Thus the amount of intersymbol interference resulting
from timing error decreases as the rolloff factor a is increased from zero to unity.

The special case with a = 1 (i.e., f; = 0) is known as the full-cosine rolloff charac.
teristic, for which the frequency response of Equation (4.60) simplifies to

1 =t
P(f) = {4W [1 + °°S(2W)]’ 0<|fl<2W (4.63)
0, |fl=2w

Correspondingly, the time response p(f) simplifies to

sinc(4 Wt}

o0 = T 1ewip (464)

This time response exhibits two interesting properties:

1. At = =T,/2 = =1/4W, we have p(t) = 0.5; that is, the pulse width measured at
half amplitude is exactly equal to the bit duration Tj,.

2. There are zero crossings at ¢ = +3T,/2, *5T,/2, -+ in addition to the usual zer
crossings at the sampling times ¢t = £T,, *2T,,---.

These two properties are extremely useful in extracting a timing signal from the received
signal for the purpose of synchronization, However, the price paid for this desirable prop-
erty is the use of a channel bandwidth double that required for the ideal Nyquist channel
corresponding to a = 0.

» ExamPiE 4.2 Bandwidth Requirement of the T1 System

In Example 3.2 of Chapter 3, we described the signal format for the T1 carrier system that s
used to multiplex 24 independent voice inputs, based on an 8-bit PCM word. It was show
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that the bit duration of the resulting time-division multiplexed signal {including a framing hit)
is -

Ty = 0.647 us

Assuming the use of an ideal Nyquist channel, it follows that the minimum transmission
bandwidth B of the T1 system is (for a = ()

1 .
B = = — =
r=W T, 772 kHz

However, a more realistic value for the hecessary transmission bandwidth is obtained by using
a full-cosine rolloff characteristic with & = 1. In this case, we find that

1
- == -+ - = — =1,
Br = W(l+ @)= 2W = 7 = 1544 Mz :

L4.6 Correlative-Level Coding

Thus far we have treated intersymbol interference as an undesirable phenomenon that
produces a degradation in system performance. Indeed, its very name connotes a nuisance
effect. Nevertheless, by adding intersymbol interference to the transmitted signal in a con-
trolled manner, it is possible to achieve a signaling rate equal to the Nyquist rate of 2W
symbols per second in a channel of bandwidth W Hertz. Such schemes are called correl-
ative-level coding or partial-response signaling schemes.” The design of these schemes is
based on the following premise: Since intersymbol interference introduced into the trans-
mitted signal is known, its effect can be interpreted at the receiver in a deterministic way.
Thus correlative-level coding may be regarded as a practical method of achieving the
theoretical maximum signaling rate of 2 W symbols per second in a bandwidth of W Hertz,
as postulated by Nyquist, using realizable and perturbation-tolerant filters.

5 DUOBINARY SIGNALING

The basic idea of correlative-level coding will now be illustrated by considering the specific
example of duobinary signaling, where “duo” implies doubling of the transmission ca-
pacity of a straight binary system. This particular form of correlative-level coding is also
called class I partial response.

Consider a binary input sequence {5,] consisting of uncorrelated binary symbols 1
and 0, each having duration T,. As before, this sequence is applied to a pulse-amplitude
modulator producing a two-level sequence of short pulses (approximating a unit impulse),
whose amplitude 4, is defined by

+ : b
4 = { i if symbol b, is 1 (4.65)

-1 if symbol b, is 0

When this sequence is applied to a duobinary encoder, it is converted into a three-
level output, namely, —2, 0, and +2. To produce this transformation, we may use the
scheme shown in Figure 4.11. The two-level sequence {a,} is first passed through a simple
filter involving a single delay element and summer, For every unit impulse applied to the
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FiGURE 4.11 Ducbinary signaling scheme.

input of this filter, we get two unit impulses spaced T, seconds apart at the filter outpyy,
We may therefore express the duobinary coder output ¢, as the sum of the present inpy
pulse a and its previous value a;_1, as shown by

Cp = g T -1 (4.66)

One of the effects of the transformation described by Equation (4.66) is to change the
input sequence {a;} of uncorrelated two-level pulses into a sequence {c;} of correlated three-

~ level pulses. This correlation between the adjacent pulses may be viewed as introducing

intersymbol interference into the transmitted signal in an artificial manner. However, the
intersymbol interference so introduced is under the designer’s control, which is the basis
of correlative coding.

" An ideal delay element, producing a delay of T, seconds, has the frequency response
exp(—727f Ts), so that the frequency response of the simple delay-line filter in Figure 4.11
is 1 + exp(—j2mfT,). Hence, the overall frequency response of this filter connected in
cascade with an ideal Nyquist channel is

H{f) = Hyyquiael )1 + exp(—j27fTs)]
= Hygyauial )lexp(jmf Ts) + exp(—jmfTe)] exp(—jmfTs) (4.67)
= 2HNyquisE(f) COS(?TfTb) exP(—'foTb)

where the subscript 1in Hy(f) indicates the pertinent class of partial response. For an ideal
Nyquist channel of bandwidth W = 1/2T,, we have {ignoring the scaling factor Tj)

1, |f]=1/2T,

. (4.68)
0, otherwise

HNyquist(f) = {

Thus the overall frequency response of the duobinary signaling scheme has the form ofa
half-cycle cosine function, as shown by

Hyf) = {2 cos(mfTy) exp(—jmfTe), | f| = .1/2T5, 46
0, otherwise
for which the magnitude response and phase response are as shown in Figures 4.124 and
4.12b, respectively. An advantage of this frequency response is that it can be easily 3"
proximated, in practice, by virtue of the fact that there is continuity at the band edges‘.
From the first line in Equation (4.67) and the definition of Hygyquieel ) in Equatiot
(4.68), we find that the impulse response corresponding to the frequency response Hyf!
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FIGURE 4.12  Frequency response of the duobinary conversion filter. (a) Magnitude response.
(b) Phase response.

consists of two sinc (Nyquist) pulses that are time-displaced by T}, seconds with respect to

each other, as shown by (except for a scaling factor)

_ sin(mt/T}) N sin[#(t ~ T,)/T)
Tt/ T, m(t — T )T,

_sin(mt/Ty) sin(mt/Ty)

T wT,  wt— T T,

_ T% sin(mt/T,)

T mT, — 1)

bi(t)

(4.70)

The impulse response &,(¢) is plotted in Figure 4.13, where we see that it has only two
distinguishable values at the sampling instants. The form of b,(z) shown here explains why
we also refer to this type of correlative coding as partial-response signaling. The response
to an input pulse is spread over more than one signaling interval; stated in another way,
the response in any signaling interval is “partial.” Note also that the tails of hy(#) decay as
1/[¢|?, which is a faster rate of decay than the 1/| t| encountered in the ideal Nyquist
channel. _

The original two-level sequence {4;} may be detected from the duobinary-coded
sequence {c;} by invoking the use of Equation (4.66). Specifically, let 4, represent the
estimate of the original pulse 4, as conceived by the receiver at time ¢ = kt,. Then, sub-
tracting the previous estimate 4,_; from ¢,, we get

ﬁk =cCp — ék_1 (4.71)

It is apparent that if ¢, is received without error and if also the previous estimate d,_, at
time ¢ = (k — 1)T, corresponds to a correct decision, then the current estimate d, will be

hI(f )

1.0

2T, ~~—"T, 0 T, 2Ty ~——"3T, 4T,

FIGURE 4.13 Impulse response of the duobinary conversion filter.
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correct too. The technique of using a stored estimate of the previous symbol is calleq
decision feedback.

We observe that the detection procedure just described is essentially an inverse of the
operation of the simple delay-line filter at the transmitter. However, a major drawback of
this detection procedure is that once errors are made, they tend to propagate through the
output because a decision on the current input , depends on the correctness of the decisioy
made on the previous input @;_;.

A practical means of avoiding the error-propagation phenomenon is to use precoding
before the duobinary coding, as shown in Figure 4.14, The precoding operation performed
on the binary data sequence {b,} converts it into another binary sequence {d} defined by

dy = by @ dy (4.72)
where the symbol @ denotes modulo-two addition of the binary digits b, and dj_ ;. This

addition is equivalent to a two-input EXCLUSIVE OR operation, which is performed ag
follows:

symbol 1 if either symbol b, or symbol d;—, (but not both) is 1
d, = (4.73)

symbol 0 otherwise

The precoded binary sequence {d} is applied to a pulse-amplitude modulator, producing
a corresponding two-level sequence of short pulses {a;}, where 4, = 1 as before. This
sequence of short pulses is next applied to the duobinary coder, thereby producing the
sequence {c;} that is related to {a,} as follows:

Cp = dp t dp—1 (4.74)

Note that unlike the linear operation of duobinary coding, the precoding described by

Equation {4.72) is a nonlinear operation.
The combined use of Equations {4.72) and (4.74) yields

{0 if data symbol b, is 1
Cp =

4,
+2  if data symbol b, is 0 *73)

which is illustrated in Example 4.3. From Equation {4.75) we deduce the following decision
rule for detecting the original binary sequence (b} from {c,}:
If |c,| <1, saysymbol b is 1

4.76
If lcp| > 1, say symbol b, is O (4.76)

Input
pipary ~-—-——————m ==y
sequence | Modulo-2 adder Output
b id,} Pulse- fay} ; .,
bed AR * amplitude S DuobC:nary =0 three-leve
P modulator coder sequence
Sample at eyl
§ = le,

——
By
~
{
—
—

Precoder

FIGURE 4.14 A precoded duobinary scheme; details of the duobinary coder are given in Figwe
411,
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{ck} Saybk=1if|ckl<l

—————=]  Rectifier Decision

device

= Sayd,=Cif fc,] >1

Threshold =1

FIGURE 4.15  Detector for recovering original hinary sequence from the precoded duohinary
coder output.

When |c,| = 1, the receiver simply makes a random guess in favor of symbol 1 or 0.
According to this decision rule, the detector consists of a rectifier, the output of which is
compared in a decision device to a threshold of 1. A block diagram of the detector is
shown in Figure 4.15. A useful feature of this detector is that no knowledge of any input
sample other than the present one is required. Hence, error propagation cannot occur in
the detector of Figure 4.135. '

B EXAMPLE 4.3 Duobinary Coding with Precoding

Consider the binary data sequence 0010110. To proceed with the precoding of this sequence,
which involves feeding the precoder output back to the input, we add an extra bit to the
precoder output. This extra bit is chosen arbitrarily to be 1. Hence, using Equation {(4.73), we
find that the sequence {d,} at the precoder output is as shown in row 2 of Table 4.1. The polar
representation of the precoded sequence {d,} is shown in row 3 of Table 4.1, Finally, using
Equation (4.74), we find that the duobinary coder output has the amplitude levels given in
row 4 of Table 4.1. :

To detect the original binary sequence, we apply the decision rule of Equation {4.76),
and so obrain the birary sequence given in row § of Table 4.1. This latcer result shows that,
in the absence of noise, the original binary sequence is detected correctly. A

2 MoDIFIED DUOBINARY SIGNALING

In the duobinary signaling technique the frequency response H(f), and consequently the
power spectral density of the transmitted pulse, is nonzero at the origin. This is considered
to be an undesirable feature in some applications, since many communications channels
cannot transmit a DC component. We may correct for this deficiency by using the class
IV partial response or modified duobinary technique, which involves a correlation span
of two binary digits. This special form of correlation is achieved by subtracting amplitude-
modulated pulses spaced 2T, seconds apart, as indicated in the block diagram of Figure

g TABLE 4.1 Illusirating Example 4.3 on duobinary coding

Binary sequence {5,} 0 0 1 0 1 1 0
Precoded sequence {4y} 1 1 1 0 0 1 0 0
Two-level sequence {a,} +1 +1 +1 -1 -1 +1 -1 -1
Duobinary coder output {c,} +2 42 0o =2 0 0 =2
Binary sequence obtained by 0 0 1 0 1 1 0

applying decision rule of Eq. (4.76)
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FIGURE 4.16 Modified duobinary signaling scheme.

4.16. The precoder involves a delay of 2T}, seconds. The output of the modified duobinary
conversion filter is related to the input two-level sequence {a,} at the pulse-amplitude mod-
ulator output as follows:

Cp = dp — @2 (4.77)

Here, again, we find that a three-level signal is gencrated. With 4, = *1, we find that ¢,
takes on one of three values: +2, 0, and —2.

The overall frequency response of the delay-line filter connected in cascade with an
ideal Nyquist channel, as in Figure 4.16, is given by

Hyolf) = Hiyqusd F)1 — exp(—i4afTy)|
= 2jHnyqu f)sin(2wf T;) exp(—j27fT5)

where the subscript IV in Hyy(f) indicates the pertinent class of partial response and
Hpiyquise(f) is as defined in Equation (4.68). We therefore have an overall frequency re-
sponse in the form of a half-cycle sine function, as shown by

2j sin(2nfTy) exp(—i2wfT,), | f|=1/2T,

0, elsewhere

(4.78)

Hw(f) = { (4.79)

The corresponding magnitude response and phase response of the modified duobinary
coder are shown in Figures 4.17a and 4.17b, respectively. A useful feature of the modified
duobinary coder is the fact that its output has no DC component. Note also that this

|Hpl£)| arg. [Hy ()]

(ST
-

\
N 1
2T, 4T, 4T, 2T,

1

(a) {b)

FIGURE 4,17 Frequency response of the modified duobinary conversion filter. (a) Magnitude
response. (b) Phase response.
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second form of correlative-level coding exhibits the same continuity at the band edges as
in duobinary signaling. .

From the first line of Equation (4.78) and the definition of Hyyu.(f) in Equation
(4.68), we find that the impulse response of the modified duobinary coder consists of two
sinc (Nyquist) pulses that are time-displaced by 2T, seconds with respect to each other, as
shown by (except for a scaling factor)

hrolt) = sin(wt/T,)  sin[ar(t = 2T,)/T,)]
/Ty, m(t — 2T, )T,
_ sin{wt/T,)  sin{mt/T,)
T wT,  w(— 2T, )T,
_ 2T% sin{mt/T,)
~ m2T, —1)

(4.80)

This impulse response is plotted in Figure 4.18, which shows that it has three distinguish-
able levels at the sampling instants. Note also that, as with duobinary signaling, the tails
of bry(t) for the modified duobinary signaling decay as 1/|¢|2.

To eliminate the possibility of error propagation in the modified duobinary system,
we use a precoding procedure similar to that used for the duobinary case. Specifically,
prior to the generation of the modified duobinary signal, a modulo-two logical addition
is used on signals 2T, seconds apart, as shown by (see the front end of Figure 4.16)

dp = b, @ dys
_ {symbol 1 if either symbol b, or symbol d,_, (but not both) is 1(4.81)
symbol 0 otherwise

where {b} is the incoming binary data sequence and [d,} is the sequence at the precoder
output. The precoded sequence {d,} thus produced is then applied to a pulse-amplitude
modulator and then to the modified duobinary conversion filter.

In Figure 4.16, the output digit ¢, equals —2, 0, or +2, assuming that the pulse-
amplitude modulator uses a polar representation for the precoded sequence {d,}. Also we

find that the detected digit b, at the receiver output may be extracted from ¢; by disre-
garding the polarity of ;. Specifically, we may formulate the following decision rule:

If |c,| > 1,  say symbol b is 1

4.82
If |cp| <1,  say symbol b, is O (4.82)
hplr)
1.0
~N | JAN .

2Ty AT, D T, 2T, 3T, AT,

1o0p--——-——=—=

FIGURE 4,18 Impulse response of the modified duobinary conversion filter.
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When | ¢, | = 1, the receiver makes a random guess in favor of symbol 1 or 0. As with ¢},
duobinary signaling, we may note the following:

» In the absence of channel noise, the detected binary sequence (6.} is exactly the same
as the original binary sequence {f,} at the transmitter input.
& The use of Equation {4.81) requires the addition of two extra bits to the precoded

sequence {a;}. The composition of the decoded sequence {6,) using Equation (4.82)
is invariant to the selection made for these two bits.

s GENERALIZED FORM OF CORRELATIVE-LEVEL CODING
(PARTIAL-RESPONSE SIGNALING)

The duobinary and modified duobinary techniques have correlation spans of 1 binary digi;
and 2 binary digits, respectively. It is a straightforward matter to generalize these twq
techniques to other schemes, which are known collectively as correlative-level coding or
partial-response signaling schemes. This generalization is shown in Figure 4.19, where
Hygyquisel f) is defined in Equation (4.68). It involves the use of a tapped-delay-line filier
with tap-weights two, w1y, * * 5 Wn-1- Specifically, different classes of partial-response sig-

Input . Ideal Output
two‘»level channel, - . muitilevel
seq{L;e}nce Hyqustf)|  Sampleat S04

k - t= kT, led

W

uy

FIGURE 4.19 Generalized correlative coding scheme.
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* TaBiE 4.2  Different classes of partial-response signaling schemes
referring to Figure 4.19

Type of Class N W tw; W, W Wy Comiments
I 2 1 1 Duobinary coding
Il 3 1 2 1
1 3 1 -1
I\Y 3 1 0 -1 ) Modified duobinary coding
Vv 5 - 0 2 0 -1

naling schemes may be achieved by using a weighted linear combination of N ideal Nyquist
(sinc) pulses, as shown by

N-—1 ¢
bty = > w, sinc(m - n) (4.83)
a=0 Tb

An appropriate choice of the tap-weights in Equation (4.83) results in a variety of spectral
shapes designed to suit individual applications. Table 4.2 presents the specific details of
five different classes of partial-response signaling schemes. For example, in the duobinary
case (class I partial response), we have

o — +1

uy = +1

and w, = 0 for # = 2. In the modified duobinary case (class IV partial response), we have

Wy = +1
(21 =0
Wy = "'"""1

and w, = 0 for n = 3.
The useful characteristics of partial-response signaling schemes may now be sum-
marized as follows:

* Binary data transmission over a physical baseband channel can be accomplished at
a rate close to the Nyquist rate, using realizable filters with gradual cutoff
characteristics.

¥ Different spectral shapes can be produced, appropriate for the application at hand.

. However, these desirable characteristics are achieved at a price: A larger signal-to-noise
ratio is required to yield the same average probability of symbol error in the presence of
noise as in the corresponding binary PAM systems because of an increase in the number
of signal levels used.

Ij-'? Baseband M-ary PAM Transmission

In the baseband binary PAM system of Figure 4.7, the pulse-amplitude modulator pro-
duces binary pulses, that is, pulses with one of two possible amplitude levels. On the other
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switched telephone network, we find that two factors contribute to the distribution of
pulse distortion on different link connections:

> Differences in the transmission characteristics of the individual links that may be
switched together.

# Differences in the number of links in a connection.

The result is that the telephone channel is random in the sense of being one of an ensemble
of possible physical realizations. Consequently, the use of a fixed pair of matched filter
and equalizer designed on the basis of average channel characteristics may not adequately
reduce the effects of intersymbol interference and channel noise, To realize the full trans-
mission capability of the telephone channel, we need an adaptive receiver’ that provides
for the adaptive implementation of both the matched filter and the equalizer in a combined
manner. The receiver is adaptive in the sense that the equalizer coefficients are adjusted
automatically in accordance with a built-in algorithm.

Another point of interest is that it may be desirable to have the taps of the equalizer
spaced by an amount closer than the symbol period; typically, the spacing between adjacent
taps is set equal to T/2. The resulting structure is known as a fractionally spaced equalizer
(ESE). An FSE has the capability of compensating for delay distortion much more effec-
tively than a conventional synchronous equalizer. Another advantage of the FSE is the fact
that data transmission may begin with an arbitrary sampling phase. However, mathemat-
ical analysis of the FSE is more complicated than for a synchronous equalizer and will
therefore not be pursued here.'”

| 4.10 Adaptive Equalization

In this section we develop a simple and yet effective algorithm for the adaptive equalization
of a linear channel of unknown characteristics. Figure 4.28 shows the structure of an
adaptive synchronous equalizer, which incorporates the matched filtering action. The al-
gorithm used to adjust the equalizer coefficients assumes the availability of a desired re-
sponse. One’s first reaction to the availability of a replica of the transmitted signal is: If
such a signal is available at the receiver, why do we need adaptivé equalization? To answer
this question, we first note that a typical telephone channel changes little during an average
data call. Accordingly, prior to data transmission, the equalizer is adjusted under the guid-

{n—1} xln-N+ 11 x[n -~ Nl
Input . 1 i -1 o . -1
xlnl 4 H [ Z
; Variable v
weights
Wp Lt Wn-1 Wy
.. _ Quiput
\2J ) 21 i
Error signal
eln]

Desired
response
d[r]

F1GURE 4.28 Block diagram of adaptive equalizer.
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ance of a training sequence transmitted through the channel. A synchronized versiop (f
this training sequence is generated at the receiver, where (after a time shift equal to ¢,
transmission delay through the channel) it is applied to the equalizer as the desired p,,
sponse. A training sequence commonly used in practice is the pseudonoise (PN} sequene,
which consists of a deterministic periodic sequence with noise-like characteristics, Tw(;
identical PN sequence generators are used, one at the transmittér and the other at ¢h,
receiver. When the training process is completed, the PN sequence generator is switche
off, and the adaptive equalizer is ready for normal data transmission. Detailed descriptio
of PN sequence generators is presented in Chapter 7.

5 LEAST-MEAN-SQUARE ALGORITHM (REVISITED)

To simplify notational matters, we let
x[n] = x{nT)
yln] = y(nT)

Then, the output y[#] of the tapped-delay-line equalizer in response to the input sequence
[x[#]} is defined by the discrete convolution sum (see Figure 4.28)

N
ylnl = Z,O wixln — k] (4.112)

where 1w, is the weight at the kth tap, and N + 1 is the total number of taps. The tap-
weights constitute the adaptive filter coefficients. We assume that the input sequence {x[#]}
has finite energy. We have used a notation for the equalizer weights in Figure 4.28 thatis
different from the corresponding notation in Figure 4.27 to emphasize the fact that the
equalizer in Figure 4.28 also incorporates matched filtering.

The adaptation may be achieved by observing the error between the desired pulse
shape and the actual pulse shape at the filter output, measured at the sampling instants,
and then using this error to estimate the direction in which the tap-weights of the filter
should be changed so as to approach an optimum set of values. For the adaptation, we
may use a criterion based on minimizing the peak distortion, defined as the worst-case
intersymbol interference at the output of the equalizer. The development of an adaptive
equalizer using such a criterion builds on the zero-forcing concept described briefly in
Section 4.9. However, the equalizer is optimum only when the peak distortion at its input
is less than 100 percent (i.e., the intersymbol interference is not too severe). A better
approach is to use a mean-square error criterion, which is more general in application;
also an adaptive equalizer based on the mean-square error criterion appears to be less
sensitive to timing perturbations than one based on the peak distortion criterion. Accord-
ingly, in what follows we use the mean-square error criterion to derive the adaptive equal-
ization algorithm.

Let a[#] denote the desired response defined as the polar representation of the rith
transmitted binary symbol. Let e[#] denote the error signal defined as the difference be-
rween the desired response a[#] and the actual response y[#] of the equalizer, as shown by

e[n] = aln] — yln] (4.113)

In the least-mean-square (LMS) algorithm'* for adaptive equalization, the error signal elt]
actuates the adjustments applied to the individual tap weights of the equalizer 2 the
algorithm proceeds from one iteration to the next. A derivation of the LMS algorithm for
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adaptive prediction was presented in Section 3.13. Recasting Equation (3.72) into its most
general form, we may state the formula for the LMS algorithm in words as follows:

Input signal
Updated value Old value . pit 51§
( j _ ( ) 4 (Step»sme) | applied to (Error) (4.114)

of kth tap- of kth tap- bth o al
wei ght weight parametex th tap- signa
weight

Let u denote the step-size parameter. From Figure 4.28 we see that the input signal applied
to the kth tap-weight at time step # is x[# — k]. Hence, using &/, (n) as the old value of
the kth tap-weight at time step #, the updated value of this tap-weight at time step # + 1
is, in light of Equation (4.114), defined by

Weln + 1] = wn] + wx[n — kle[n], k=20,1,...,N (4.113)

where
N

eln] = aln] — 3 dylnlxln — k] (4.116)

k=0

These two equations constitute the LMS algorithm for adaptive equalization. Note that
the length of the adaptive equalizer in Figure 4.28 is not to be confused with the length of
the equalizer in Figure 4.27.

We may simplify the formulation of the LMS algorithm using matrix notation. Let
the (N + 1)-by-1 vector x[#] denote the tap-inputs of the equalizer:

x[n] = [x[n],...,x[n — N + 1], x[r — N]J]* (4.117)

where the superscript T denotes matrix transposition. Correspondingly, let the
{N + 1)-by-1 vector w[#] denote the tap-weights of the equalizer:

Wln] = [olnl, inln], . .., dnln]]” (4.118)

We may then use matrix notation to recast the convolution sum of Equation (4.112) in
the compact form

ylr] = xT[n]W[n] _ (4.119)

where x[n]|%][#] is referred to as the inner product of the vectors x{#] and W[#]. We may
now summarize the LMS algorithm for adaptive equalization as follows:

1. Initialize the algorithm by setting W[1] = O (i.e., set all the tap-weights of the equalizer
to zero at # = 1, which corresponds to time t = T).

2, Forn=1,2,...,compute

yln] = xT[n]W[n]
e[n] = a[n] — y[n]
Wln + 1] = W|n] + peln]x(n]

where w is the step-size parameter.

3. Continue the iterative computation until the equalizer reaches a “steady state,” by
which we mean that the actual mean-square error of the equalizer essentially reaches
a constant value.

The LMS algorithm is an example of a feedback system, as illustrated in the block
diagram of Figure 4.29, which pertains to the kth filter coefficient. It is therefore possible
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FIGURE 4.29 Signal-flow graph representation of the LMS algorithm involving the kth tap
weight.

for the algorithm to diverge (i.e., for the adaptive equalizer to become unstable). Unfor.
tunately, the convergence behavior of the LMS algorithm is difficult to analyze. Neverthe-
less, provided that the step-size parameter w is assigned a small value, we find that after 5
large number of iterations the behavior of the LMS algorithm is roughly similar to that of
the steepest-descent algorithm, which uses the actual gradient rather than a noisy estimae
for the computation of the tap-weights. (The steepest-descent algorithm was discussed in
Section 3.13.)

OPERATION OF THE EQUALIZER

There are two modes of operation for an adaptive equalizer, namely, the training mode
and decision-directed mode, as shown in Figure 4.30. During the training mode, as ex-
plained previously, a known PN sequence is transmitted and a synchronized version of it
is generated in the receiver, where (after a time shift equal to the transmission delay) it s
applied to the adaptive equalizer as the desired response; the tap-weights of the equalizer
are thereby adjusted in accordance with the LMS algorithm.

When the training process is completed, the adaptive equalizer is switched to its
second mode of operation: the decision-directed mode. In this mode of operation, the errot

signal is defined by

e[n] = 4[n] — y[n] (4.120)

Adaptive Decision

equalizer/ device
x[nl ylnl alnl 5 1 alal Training
—_— {wyl 4 S o = sequence
— generator

ela] Z
Na gty

FIGURE 4.30 Illustrating the two operating modes of an adaptive equalizer: For the training
mode, the switch is in position 1; and for the tracking mode, it is moved to position 2.
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where y[#] is the equalizer output at time t = #T, and 4[#] is the final (not necessarily)
correct estimate of the transmitred symbol a[#]. Now, in normal operation the decisions
made by the receiver are correct with high probability, This means that the error estimates
are correct most of the time, thereby permitting the adaptive equalizer to operate satisfac-
torily. Furthermore, an adaptive equalizer operating in a decision-directed mode is able to
track relatively slow variations in channel characteristics.

It turns out that the larger the step-size parameter u, the faster the tracking capability
of the adaptive equalizer. However, a large step-size patameter p may result in an unac-
ceptably high excess mean-square error, defined as that part of the mean-square value of
the error signal in excess of the minimum attainable value J_;, {which results when the
tap-weights are at their optimum settings). We therefore find that in practice the choice of
a suitable value for the step-size parameter u involves making a compromise between fast
tracking and reducing the excess mean-square error.

8 DECISION-FEEDBACK EQUALIZATION

To develop further insight into adaptive equalization, consider a baseband channel with
impulse response denoted in its sampled form by the sequence 5[]} where s[n] = h(nT).
The response of this channel to an input sequence {x[#]}, in the absence of noise, is given
by the discrete convolution sum

ylrl = > hlklx[n ~ k]
y (4.121)

= h[0]x[n] + kz biklxn — k] + > bik)x[n — k]
<0 k>0

The first term of Equation (4.121) represents the desired data symbol. The second term is
due to the precursors of the channel impulse response that occur before the main sample
#[0] associated with the desired data symbol. The third term is due to the postcursors of
the channel impulse response that occur after the main sample #[0]. The precursors and
postcutsors of a channel impluse response are illustrated in Figure 4.31. The idea of de-
cision-feedback equalization'” is to use data decisions made on the basis of precursors of
the channel impulse response to take care of the postcursors; for the idea to work, however,
the decisions would obviously have to be correct. Provided that this condition is satisfied,

R0}

,
4 v

Precursors Postcursors

FIGURE 4.31 Impulse response of a discrete-time channel, depicting the precursors and
postcursors,
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FIGURE 4.32 Block diagram of decision-feedback equalizer.

a decision-feedback equalizer is able to provide an improvement over the performance of
the tapped-delay-line equalizer.

A decision-feedback equalizer (DFE) consists of a feedforward section, a feedback
section, and a decision device connected together as shown in Figure 4.32. The feedforward
section consists of a tapped-delay-line filter whose taps are spaced at the reciprocal of the
signaling rate. The data sequence to be equalized is applied to this section. The feedback
section consists of another tapped-delay-line filter whose taps are also spaced at the recip-

rocal of the signaling rate. The input applied to the feedback section consists of the deci-

sions made on previously detected symbols of the input sequence. The function of the
feedback section is to subtract out that portion of the intersymbol interference produced
by previously detected symbols from the estimates of future samples.

Note that the inclusion of the decision device in the feedback loop makes the equal-
izer intrinsically nonlinear and therefore more difficult to analyze than an ordinary tapped-
delay-line equalizer. Nevertheless, the mean-square error criterion can be used to obtaina
mathematically tractable optimization of a decision-feedback equalizer. Indeed, the LMS
algorithm can be used to jointly adapt both the feedforward tap-weights and the feedback
tap-weights based on a cormmon error signal; see Problem 4.37.

On the basis of extensive comparative evaluations of a linear equalizer and decision-
feedback equalizer reported in the literature,'® we may report that when the frequency
response of a linear channel is characterized by severe amplitude distortion or relatively
sharp amplitude cutoff, the decision-feedback equalizer offers a significant improvement
in performance over a linear equalizer for an equal number of taps. It is presupposed here
that the feedback decisions in the DFE are all correct. For an example of sharp amplitude
cutoff, see the frequency response of a telephone channel depicted in Figure 8 in the Back-
ground and Preview chapter.

Unlike a linear equalizer, a decision-feedback equalizer suffers from error propags
tion. However, despite the fact that the DFE 1s a feedback system, error propagation will
not persist indefinitely. Rather, decision errors tend to occur in bursts. To justify this kind
of behavior, we offer the following intuitive reasoning:'*

» Let L denote the number of taps in the feedback section of a DFE. After a sequence
of L consecutive correct decisions, all decision errors in the feedback section will be
flushed out. This points to an error propagation of finite duration.

» When a decision error is made, the probability of the next decision being erroneous
too is clearly no worse than 1/2.

> Let K denote the duration of error propagation, that is, the number of symbf)%s
needed to make L consecutive correct decisions. Then the average error rate I8
(Kf2)P,, where K/2 is the average number of errors produced by a single decision
error, and P, is the probability of error given that the past L decisions are all correch
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» In a fair-coin tossing experiment, the average number of coin tosses, K, needed to
get L successive heads (representing no errors) turns out to be 2(2% — 1).

It follows therefore that the effect of error propagation in a decision-feedback equalizer is
to increase the average error rate by a factor approximately equal to 2%, compared to the
probability of making the first error. For example, for L = 3 the average error rate is
increased by less than an order of magnitude due to error propagation.

Computer Experiments: Eye Patterns

In previous sections of this chapter we have discussed vatious techniques for dealing with
the effects of channel noise and intersymbol interference on the performance of a baseband
pulse-transmission system. In the final analysis, what really matters is how to evaluate the
combined effect of these impairments on overall system performance in an operational
environment. An experimental tool for such an evaluation in an insightful manner is the
so-called eye pattern, which is defined as the synchronized superposition of all possible
realizations of the signal of interest {e.g., received signal, receiver output) viewed within a
particular signaling interval. The eye pattern derives its name from the fact that it resembles
the human eye for binary waves. The interior region of the eye pattern is called the eye
opening.

An eye pattern provides a great deal of useful information about the performance of
a data transmission system, as described in Figure 4.33. Specifically, we make the following
statements:

# The width of the eye opening defines the time interval over which the received signal
can be sampled without error from intersymbol interference; it is apparent that the
preferred time for sampling is the instant of time at which the eye is open the widest.

» The sensitivity of the system to timing errors is determined by the rate of closure of
the eye as the sampling time is varied.

& The height of the eye opening, at a specified sampling time, defines the noise margin
of the system.

Best
sampiing
time
l Distortion at
I /sampling time

Slope = sensitivity Margin
to timing error over noise
Distortion of

- Zero-crossinngs
k|

Time interval over which
the received signal can
be sampled

FIGURE 4.33 Interpretation of the eye pattern.
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When the effect of intersymbol interference is severe, traces from the upper portion of the
eye pattern Cross traces from the lower portion, with the result that the eye is completely
closed. In such a situation, it is impossible to avoid errors due to the combined presence
of intersymbol interference and noise in the system. '

In the case of an M-ary system, the eye pattern contains (M — 1) eye openings stackeg
up vertically one on the other, where M is the number of discrete amplitude levels used to
construct the transmitted signal. Ina strictly linear system with truly random data, all thege
eye openings would be identical.

In the next two experiments, we use computer simulations to study the eye patterng
for a quaternary (M = 4) baseband PAM transmission system under noiseless, noisy, ang
band-limited conditions. The effect of channel nonlinearity on eye patterns is discussed in
Problem 4.38.

Experiment 1: Effect of Channel Neise

Figure 4.34a shows the eye diagram of the system under idealized conditions: no channe]
noise and no bandwidth limitation. The source symbols used are randomly generated on
a computer, with raised cosine pulse-shaping. The system parameters used for the gener-
ation of the eye diagram are as follows: Nyquist bandwidth W = 0.5 Hz, rolloff factor
a = 0.5, and symbol duration T = T, log, M = 2T,. The openings in Figure 4.34 are
perfect, indicating reliable operation of the system. Note that this figure has M — 1 =3
openings.

Figures 4.34b and 4.34¢c show the eye diagrams for the system, but this time with
channel noise cotrupting the received signal. These two figures were simulated for signal-
to-noise ratio SNR = 20 dB and 10 dB, respectively, with the SNR being measured at the
channel output. When SNR = 20 dB the effect of channel noise is hardly discernible in
Figure 4.34b, but when SNR = 10 dB the openings of the eye diagram in Figure 4.34c are
barely visible.

Experiment 2: Effect of Bandwidth Limitation

Figures 4.352 and 4.35 b show the eye diagrams for the quaternary system using the same
parameters as before, but this time under a bandwidth-limited condition and a noiseless
channel. Specifically, the channel is now modeled by a low-pass Butterworth filter, whose
squared magnitude response is defined by

- 1
IH(sz:W

where N is the order of the filter, and fo Is its 3.dB cutoff frequency. For the computef
experiment described in Figure 4.35a, the following values are used:

N = 25 and f, = 0.975 Hz
The bandwidth required by the PAM trasmission system is computed to be
Br=W(l + o) =075 Hz

Although the channel bandwidth (i.e., cutoff frequency) is greater than absolutely neces”
sary, its effect on the passband is observed as a decrease in the size of the eye opening
compared to those in Figure 4.344. Instead of the distinct values at rime 2 = 1 s (as shoW!
in Figure 4.34a), now there is a blurred region.
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FIGURE 4.34 (2) Eve diagram for noiseless quaternary system. {b) Eye diagram for quaternary
system with SNR = 20 dB. (¢} Eye diagram for quaternary system with SNR = 10 dB.
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modification may result in a significant increase in transmit power; modulo arithmerje is
used to overcome most of this power increase.

13. For performance comparison between linear equalizers and decision-feedback equalizey,
see Gitlin et al. (1992) and Proakis {1995). ’

14. The intuitive discussion on error propagation in decision-feedback equalizers presented iy
Section 4.10 follows Gitlin et al. {1992).

For a rigorous evaluation of the probability of symbol error P, in a decision-feedbacy
equalizer with error propagation, see Duttweiler et al. (1974). In this paper it is showy
that in the worst-case intersymbol interference, P, is multiplied by a factor of 2" relatiy,
to the probability of error that results in the absence of decision errors at high signal-t,.
noise ratios, where L is the number of taps in the feedback section. The result derived by
Dutrweiler et al. provides theoretical justification for the intuitive arguments presented i
Section 4.10.

PROBLEMS

Matched Filters

4,1 Consider the signal s(¢) shown in Figure P4.1.
(a) Determine the impulse response of a filter matched to this signal and sketch it as 5
function of time. .
(b) Plot the matched filter output as a function of time.
(c} What is the peak value of the output?

{5
A
2
r t
0 T
2
AL
2
FiGURE P4.1

4.2 Figure P4.2a shows a pair of pulses that are orthogonal to each other over the interval
[0, T]. In this problem we investigate the use of this pulse-pair to study a two-dimensional
matched filter.

(a) Determine the matched filters for the pulses s(#) and s,(¢) considered individually;
for s,(2) the filter is the same as that considered in Problem 4.1. ‘
(b) Form a two-dimensional matched filter by connecting the two matched filters of Patt
(a) in parallel, as shown in Figure P4.2b. Hence, demonstrate the following:
(1) When the pulse s4(t) is applied to this two-dimensional filter, the response of the
lower matched filter is zero.
(ii) When the pulse s(#) is applied to the two-dimensional filter, the response of the
upper matched filter is zero.
Generalize the results of your investigation.
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Consider a rectangular pulse defined by

() = A, 0=:=T
g 0, otherwise

It is proposed to approximate the matched filter for g(¢} by an ideal low-pass filter of

bandwidth B; maximization of the peak pulse signal-to-noise ratio is the primary

objective.

{a) Determine the optimum value of B for which the ideal low-pass filter provides the
best approximation to the matched filter.

(b) By how many decibels is the ideal low-pass filter worse off than the matched filter?

In this problem we explore another method for the approximate realization of a matched

filter, this time using the simple resistance-capacitance (RC) low-pass filter shown in Fig-
ure P4.4. The frequency resonse of this filter is

1
T 1+ jflf,

where fy = 1/27RC. The input signal g{t) is a rectangular pulse of amplitude 4 and
duration T. The requirement is to optimize the selection of the 3-dB cutoff frequency f,
of the filter so that the peak pulse signal-to-noise ratio at the filter output is maximized.
With this objective in mind, show that the optimum value of f, is 0.2/T, for which the
loss in signal-to-noise ratio compared to the matched filter is about 1 dB.

H(f)

o AN 0 No—o
fnput c == Qutput
signal T signai

0 - o

FiGuRre P4.4

Probability of Error Calculation

The formula for the optimum threshold in the receiver of Figure 4.4 is, in general, given
by Equation (4.37). Discuss, in graphical terms, how this optimum choice affects the
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4.6

4.7

4.8

4.9

4.10

4.11

contributions of the two terms in Equation (4.35) for the average probability of Symby|
error P, by considering the following two cases:

(a) po > P
(b) p1 < po

where p, and p; are the a priori probabilities of symbols 0 and 1, respectively.

In a binary PCM systen1, symbols 0 and 1 have a priori probabilities p, and p,, respec.
tively. The conditional probability density function of the random variable Y {with sampls
value y) obtained by sampling the matched filter output in the receiver of Figure 4.4 5; the
end of a signaling interval, given that symbol 0 was transmitted, is denoted by f.(y 0]
Similarly, fy(y|1) denotes the conditional probability density function of Y, given tha;
symbol 1 was transmitted. Let A denote the threshold used in the receiver, so that if h,
sample value y exceeds A, the receiver decides in favor of symbol 1; otherwise, it decides
in favor of symbol 0. Show that the optimum threshold A, for which the average po},.
ability of error is a minimum, is given by the solution of

Felhal D po
fY(Aopt | 0} pl

A binary PCM system using polar NRZ signaling operates just above the error threshold
with an average probability of error equal to 107%. Suppose that the signaling rate 5
doubled. Find the new value of the average probability of error. You may use Table A6.4
to evaluate the complementary error function.

A continuous-time signal is sampled and then transmitted as a PCM signal. The randon
variable at the input of the decision device in the receiver has a variance of 0.01 volts?.

(a) Assuming the use of polar NRZ signaling, determine the pulse amplitude that must
be transmitted for the average error rate not to exceed 1 bit in 10% bits.

(b) If the added presence of interference causes the error rate to increase to 1 bit in 1°
bits, what is the variance of the interference?

A binary PCM wave uses unipolar NRZ signaling to transmit symbols 1 and 0; symbol
1 is represented by a rectangular pulse of amplitude A and duration T,. The channel noise
is modeled as additive, white and Gaussian, with zero mean and power spectral density
N,/2. Assuming that symbols 1 and 0 occur with equal probability, find an expression
for the average probability of error at the receiver output, using a matched filter as de-
scribed in Section 4.3.

Repeat Problem 4.9 for the case of unipolar return-to-zero signaling, in which case symbol
1 is represented by a pulsc of amplitude A and duration T;/2 and symbol 0 is represented
by transmitting no pulse.

Hence show that this unipolar type of signaling requires twice the ‘average powet
of unipolar nonreturn-to-zero (i.e., on-off) signaling for the same average probability of
symbol error.

In this problem, we revisit the PCM receiver of Figure 4.4, but this time we consider the
use of bipolar nonreturn-to-zero signaling, in which case the transmitted signal s(t) s
defined by

Binary symbol 1: s(f) = *Afor 0 <t =T

Binary symbol 0: s{¢) = 0,0 <t =T
Determine the average probability of symbol error P, for this receiver assuming that the
binary symbols 0 and 1 are equiprobable.

Raised Cosine Spectrum

4,12

The nonreturn-to-zero pulse of Figure P4.12 may be viewed as a very crude form of 2
Nyquist pulse. Compare the spectral characteristics of these two pulses.
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4.13 Determine the inverse Fourier transform of the frequency function P(f) defined in Equa-
tion (4.60).
4.14 An analog signal is sampled, quantized, and encoded into a binary PCM wave. The spec-
ifications of the PCM system include the following:
Sampling rate = 8 kHz
Number of representation levels = 64
The PCM wave is transmitted over a baseband channel using discrete pulse-amplitude
» modulation. Determine the minimum bandwidth required for transmitting the PCM wave
if each pulse is allowed to take on the following number of amplitude levels: 2, 4, or 8.

4.15 Consider a baseband binary PAM system that is designed to have a raised-cosine spectrum
P(f). The resulting pulse p(t) is defined in Equation {4.62). How would this pulse be
modified if the system was designed to have a linear phase response?

4.16 A computer puts out binary data at the rate of 56 kb/s. The computer output is transmitted
using a baseband binary PAM system that is designed to have a raised-cosine spectrum,
Determine the transmission bandwidth required for each of the following rolloff factors:
@ = 0.25,0.5,0.75, 1.0.

4.17 Repeat Problem 4.16, given that each set of three successive binary digits in the computer
output are coded into one of eight possible amplitude levels, and the resulting signal is
transmitted using an eight-level PAM system designed to have a raised-cosine spectrum.

4.18 An analog signal is sampled, quantized, and encoded into a binary PCM wave. The num-
ber of representation levels used is 128. A synchronizing pulse is added at the end of each
code word representing a sample of the analog signal. The resulting PCM wave is trans-
mitted over a channel of bandwidth 12 kHz using a quaternary PAM system with raised-
cosine spectrum. The rolloff factor is unity.

(a) Find the rate (b/s) at which information is transmitted through the channel.
(b) Find the rate at which the analog signal is sampled. What is the maximum possible
value for the highest frequency component of the analog signal?
4.19 A binary PAM wave is to be transmitted over a baseband channel with an absolute max-
imum bandwidth of 75 kHz. The bit duration is 10 us. Find a raised-cosine spectrum
that satisfies these requirements.

Correlative-Level Coding

4.20 The ducbinary, ternary, and bipolar signaling techniques have one common feature: They
all employ three amplitude levels. In what way does the duobinary technique differ from
the other two?

4.21 The binary data stream 001101001 is applied to the input of a duobinary system.

(a} Construct the duobinary coder output and corresponding receiver output, without a
precoder.
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(b) Suppose that owing to error during transmission, the level at the receiver inpyt pr
duced by the second digit is reduced to zero. Construct the new receiver outpuyt, -

4.22 Repeat Problem 4.21, assuming the use of a precoder in the transmitter.

4.23 The scheme shown in Figure P4.23 may be viewed as a differential encoder (consistj,
of the modulo-2 adder and the 1-unit delay element) connected in cascade with a Speci;g
form of correlative coder (consisting of the 1-unit delay element and summer). A sing},_
delay element is shown in Figure P4.23 since it is common to both the differential encod,
and the correlative coder. In this differential encoder, a transition is represented by symby;
0 and no transition by symbol 1.

(a) Find the frequency response and impulse response of the correlative coder part of },,
scheme shown in Figure P4.23.

{b) Show that this scheme may be used to convert the on—off representation of a binary
sequence (applied to the input) into the bipolar representation of the sequence at the
output. You may illustrate this conversion by considering the sequence 010001101,

For descriptions of on—off, bipolar, and differential encoding of binary sequences, see

Section 3.7.
Modulo-2
adder
Binary sequence __._/ 1 _ifi\ Bipolar representation
of 1s and Os |/ ANV of binary sequence
A -
Delay
Ty
FIGURE P4.23

4.24 Consider a random binary wave x(z) in which the 1s and 0s occur with equal probability,
the symbols in adjacent time slots are statistically independent, and symbol 1 is repre-
sented by A volts and symbol 0 by zero volts. This on—off binary wave is applied to the
circuit of Figure P4.23.

(a) Using the result of Problem 4.23, show that-the power spectral density of the bipolar
wave y(t) appearing at the output of the circuit equals

Sx(f) = TpA? sin®(mfT,) sinc*(fT)

(b) Plot the power spectral densities of the on-off and bipolar binary waves, and compare
them. .
4.25 The binary data stream 011100101 is applied to the input of a modified duobinary system
(a) Construct the modified duobinary coder output and corresponding receiver outpuf,
without a precoder.
(b) Suppose that due to error during transmission, the level produced by the third digit
is reduced to zero. Construct the new receiver output. '
4.26 Repeat Problem 4.25 assuming the use of a precoder in the transmitter.

M-ary PAM Systems

4.27 Consider a baseband M-ary system using M discrete amplitude levels. The receiver Iﬂf’fleE
is as shown in Figure P4.27, the operation of which is governed by the followins
assumptions:
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4.31 In this problem we use the LMS algorithm to formulate an adaptive echo cancellg, ¢
use in a digital subscriber line. The basic principle of adaptive echo cancellation i ?r
synthesize a replica of the echo and subtract it from the returned signal in an a daptivo
manner, as illustrated in Figure P4.31. The synthesized echo, denoted by #[n], is gene:ate:l
by passing the transmitted signal through an adaptive filter that ideally matches the trap,_
fer function of the echo path, The returned signal, consisting of the sum of actua] e}
r[n] and the received signal x[#], may be viewed as the desired response for the adaptiye
filtering process.

Using the LMS algorithm, formulate the equations that define the operation of
adaptive echo canceller in Figure P4.31.

Received
signal, x[n}

Adapive ¥ ,
filter Hybrid  fe—2e

- Flnl

» ¥ +

T e N xled 4 rinl
FicUuRE P4.31

Equalization

4.32 Figure P4.32 shows the cascade connection of a linear channel and a synchronous tapped-
delay-line equalizer. The impulse response of the channel is denoted by (), and that of
the equalizer is denoted by h(z). The h(z) is defined by

N
bit) = >, w8t — kT)
k=N .

where T is the spacing between adjacent taps of the equalizer, and the ww are its tap-
weights (coefficients). The impulse response of the cascaded system of Figure P4.32 5
denoted by p(z). The p(#) is sampled uniformly at the rate 1/T. To eliminate intersymbol
interference, we require that the Nyquist criterion for distortionless transmission be sat-
isfied, as shown by

(nT) = 1, n=0
plnT) = 0, n+0

{a) By imposing this condition, show that the (2N + 1) tap-weights of the resulting zero-
forcing equalizer satisfy the following set of (2N + 1) simultaneous equations:

vzr—q: Dec s = {1, n=0

=it nk 0, n+ *1,x2,..., =N
where ¢, = c(nT). Hence, show that the zero-forcing equalizer is an inverse filter in
that its transfer function is equal to the reciprocal of the transfer function of the
channel.

(b) A shortcoming of the zero-forcing equalizer is noise enbancement that can resultif
poor performance in the presence of channel noise. To explore this phenomeno™
consider a low-pass channel with a notch at the Nyquist frequency, that is, H(f) ¥
zero at f = 1/2T. Assuming that the channel noise is additive and white, show at
the power spectral density of the noise at the equalizer output approaches infiltf at
f=1/2T.
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This chapter discusses some basic issues that pertain to the transmission of signals over an
additive white Gaussian noise (AWGN) channel. Specifically, it addresses the following

topics:

» Geometric representation of signals with finite energy, which provides a mathematically
elegant and highly insightful tool for the study of data transmission.

» Maximum likelihood procedure for the detection of a signal in AWGN channel.

P Derivation of the correlation receiver that is equivalent to the matched filter receiver
discussed in the previous chapter.

W Probability of symbol error and the union bound for its approximate calculation,

The material presented herein naturally leads to the study of passband data transmission
covered in Chapter 6.

| 5.1 Imtroduction

Consider the most basic form of a digital communication system depicted in Figure 5.1.
A message source emits one symbol every T seconds, with the symbols belonging to an
alphabet of M symbols denoted by m,, 1, . . . , m,,. Consider, for example, the remote
connection of two digital computers, with one computer acting as an information source
that calculates digital outputs based on observations and inputs fed into it. The resulting
computer output is expressed as a sequence of 0s and 1s, which are transmitted to a second
computer over a communication channel. In this case, the alphabet consists simply of two
binary symbols: 0 and 1. A second cxample is that of a quaternary PCM encoder with an
alphabet consisting of four possible symbols: 00, 01, 10, and 11. In any event, the a priori
probabilities p1, pa, . . ., pu specify the message source output. In the absence of prior
Information, it is customary to assume that the M symbols of the alphabet are equally
likely. Then we may express the probability that symbol 2, is emitted by the source as

pi = P(m))
1f ' (5.1
=M ort=1,2,..., M

The transmitter takes the message source output #, and codes it into a distinct signal s, (z)
suitable for transmission over the channel. The signal s;(¢) occupies the full duration T

allotted to symbol m,. Most important, s,(z) is a real-valued energy signal (i.e., a signal
with finite energy), as shown by

T
E,.zfo s2tyd, i=1,2,...,M (5.2)

309
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i () PON m= estimaie of m;
hizsusfggee " Transmitter : Channei Receiver i}_

Ficure 5.1 Block diagram of a generic digital communication system.

The channel is assumed to have two characteristics:

1. The channel is linear, with a bandwidth that is wide enough to accommodate the
transmission of signal s;(t) with negligible or no distortion.

2. The channel noise, #/(t), is the sample function of a zero-smean white Gaussian nojs,
process. The reasons for this second assumption are that it makes receiver calcul,.
tions traciable, and it is a reasonable description of the type of noise present in many
practical communication systems.

We refer to such a channel as an additive white Gaussian noise (AWGN) channel, Ac-
cordingly, we may express the received signal x(t) as g

0=t=T

i=1,2,....M (5.3

x(t) = s,(t) + wlt), {

and thus model the channel as in Figure 5.2.

The receiver has the task of observing the received signal x(¢) for a dusation of T
seconds and making a best estimate of the transmitted signal s;() or, equivalently, the
symbol m;. However, owing to the presence of channel noise, this decision-making process
is statistical in nature, with the result that the receiver will make occasional errors. The
requirement is therefore to design the receiver so as to minimize the average probability
of symbol error, defined as

M

P, = > p;: Pri # m; |m) (5.4}

i=1

where m; is the transmitted symbol, # is the estimate produced by the receiver, and
P(r# # m; |m,) is the conditional error probability given that the ith symbol was sent. The
resulting receiver is said to be optimum in the minimum probability of error sense.

This model provides a basis for the design of the optimum receiver, for which we
will use geometric representation of the known set of transmitted signals, {s;(#)}. This
method, discussed in Section 5.2, provides a great deal of insight, with considerable sin-
plification of detail.

Transmitted Received
signal signal
50 + @ (£} .

+

White Gaussian noise
wi{n

FIGURE 5.2 Additive white Gaussian noise (AWGN) model of a channel.
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I_E'—% Geometric Representation of Signals

The essence of geometric representation of signals! is to represent any set of M energy
signals {s,(¢}} as linear combinations of N orthonormal basis functions, where N < M.
That is to say, given a set of real-valued energy signals s,(z), Sa2{t), - . ., smlt), each of
duration T seconds, we write ‘ '

il 0=t=T
Af) = B . .
slt) = 2, sidylo) {z. S M (5.5)
where the coefficients of the expansion are defined by
T .
i=1,2,..., M
5; = fo s;{t) () dt, {j =1,2,...,N (5.6)
The real-valued basis functions é(t), $,(t), ..., dult) are orthonormal, by which we
mean
T e
1ifi=j

where 8 is the Kronecker delta. The first condition of Equation (5.7) states that each basis
function is mormalized to have unit energy. The second condition states that the basis
functions ¢4(t), ba(t), ..., dult) are orthogonal with respect to each other over the in-
terval 0 = ¢ < T,

The set of coefficients {s,};Z; may naturally be viewed as an N-dimensional vector,
denoted by s,. The important point to note here is that the vector s, bears a one-to-one
relationship with the transmitted signal s;(¢):

® Given the N elements of the vectors s; (i.e., s;1, Si2, + « « 5 S;n) operating as input, we
may use the scheme shown in Figure 5.34 to generate the signal s;(¢), which follows

T
| p— ?— f df i 5;3
0
b0
T
Sia PTOK f dt 5o
" —_— o
Sj(t)
Bl
T
Sin /;\\ e j; dt Sin

®

¢N {1 . ¢N(f)
(a) )]

FIGURE 5.3 (a) Synthesizer for generating the signal s, (). (b) Analyzer for generating the set of
signal vectors {s;}.
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directly from Equation (3.5). It consists of a bank of N multipliers, with each my].
tiplier having its own basis function, followed by a summer. This scheme may 1,
viewed as a synthesizer.

» Conversely, given the signals s;{z}, i = 1, 2, ..., M, operating as input, we may yge
the scheme shown in Figure 5.35 to calculate the coefficients s, si, « « . Sin which
follows directly from Equation (5.6). This second scheme consists of a bank of )y
product-integrators or correlators with a common input, and with each one of thep,
supplied with its own basis function. The scheme of Figure 5.35 may be viewed g
an gnalyzer.

Accordingly, we may state that each signal in the set {s,(#)} is completely determineq
by the vector of its coefficients

5; = e s iml,Z,...,M (5.8)

The vector s; is called a signal vector. Furthermore, if we conceptually extend our conven-
tional notion of two- and three-dimensional Euclidean spaces to an N-dimensional Ey-
clidean space, we may visualize the set of signal vectors {s;|i = 1, 2, ..., M} as defining
a corresponding set of M points in an N-dimensional Euclidean space, with N mutually
perpendicular axes labeled ¢4, ¢, . . ., ¢n. This N-dimensional Euclidean space is called
the signal space.

The idea of visualizing a set of energy signals geometrically, as just described, is of
profound importance. It provides the mathematical basis for the geometric representation
of energy signals, thereby paving the way for the noise analysis of digital communication
systems in a conceptually satisfying manner. This form of representation is illustrated in
Figure 5.4 for the case of a two-dimensional signal space with three signals, that is, N = 2
and M = 3.

In an N-dimensional Euclidean space, we may define lengths of vectors and angles
between vectors. It is customary to denote the length (also called the absolute value or
norm) of a signal vector s; by the symbol || s; ||. The squared-length of any signal vectors,
is defined to be the inner product or dot product of s; with itself, as shown by

I's:[|? = sis;
N (5.9)
=;s§, i=1,2,....,M

where s;; is the jth element of s;, and the superscript T denotes matrix transposition.

There is an interesting relationship between the enetgy content of a signal and its
representation as a vector. By definition, the energy of a signal s,(¢) of duration T seconds
is

E; =J' sZ{t) dt (5.10)

0
Therefore, substituting Equation {5.5) into (5.10), we get

TN I N
E;, = J'o [2 Sz'jd’;'(t)Jl:E Sikd’k(t)]dt

=1 b=l
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&

(A S X
Wl ———

w3 b

FIGURE 5.4 Illustrating the geometric representation of signals for the case when
N=2andM = 3, !

Interchanging the order of summation and integration, and then rearranging terms, we get

N N T .
E; = E 2 Sijsikf ¢f(t)¢’k(t)dt (5.11)
=1 k=1 a

But since the ¢;(z} form an orthonormal set, in accordance with the two conditions of
Equation (5.7}, we find that Equation {5.11} reduces simply to

N
— 2
E, = 2 s}
=1

I

(5.12)
= | s

Thus Equations (5.9) and (5.12) show that the energy of a signal s;(¢) is equal to the
squared length of the signal vector s,(t) representing it.

In the case of a pair of signals s;(t) and s, (t), represented by the signal vectors s; and
s, respectively, we may also show that

fo s:{t)se(t) dt = sls, (5.13)

Equation (5.13) states that the inner product of the signals s,(t) and s, () over the interval
[0, T, using their time-domain representations, is equal to the inner product of their
respective vector representations s; and s,. Note that the inner product of s,(z) and s, (¢} is
invariant to the choice of basis functions {¢;(¢)}}X; in that it only depends on the compo-
nents of the signals s;(¢) and s, (¢) projected onto each of the basis functions.
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Yet another useful relation involving the vector representations of the signals silt)
and s, (t) is described by
N
Isi—sell*= 21 (s — se)”
=

J-T (3.14

(si(t) — se(2))dt

0

where ||'s; — s, || is the Euclidean distance, d;, between the points represented by 1he
signal vectors s; and s.

To complete the geometric representation of energy signals, we need to have a rep.
resentation for the angle 8, subtended between two signal vectors s; and s;. By deﬁnitionj
the cosine of the angle 85 is equal to the inner product of these two vectors divided by the
product of their individual norms, as shown by

9 S,-TSk (5 1
CoOsS . = 77w 1. 1 A5
* T sl Tl |

The two vectors s; and s, are thus orthogonal or perpendicular to each other if their inner
product s7s, is zero, in which case 8 = 90 degrees; this condition is intuitively satisfying,

5 ExampLE 5.1 Schwarz Inequality

Consider any pair of enérgy signals s;(¢) and s,(2). The Schwarz inequality states that

( L Sz(t)sz(f)dt) = ( fi s%(t)dr) ( J’_w s%(t)dr) (5.16)

The equality holds if and only if sy() = esi(2), where ¢ is any constant.
To prove this important inequality, let s;(z) and s,(¢) be expressed in terms of the pai
of orthonormal basis functions ¢,(t) and ¢,() as follows:

51{t) = s1104(8) + 51262(F)
52(t) = s21¢1(t) + s2202(7)
where ¢4(t) and ¢,(2) satisfy the orthonormality conditions over the entire time interval
(Mwa w):
” 1 forj =i
J’_m $it)g,{t)dt = &; = { ]

On this basis, we may represent the signals s,{t) and s,(2) by the following respective pair of
vectors, as illustrated in Figure 5.5:

0 otherwise

821
5y =
S22

From Figure 5.5 we readily see that angle 8 subtended between the vectors s; and sz 18

$18,
cos = ———"—"1
[N NEA

'[_wm S1 (t)s;_(t)dt

( J': s%(t)a't)m ( J: s%(t)dtj

(3.17)

12
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$z

S22

$12

!
|
|
|
|
s

P

1

FIGURE 5.5 Vector representations of signals s, (t) and s,(t), providing the background picture
for proving the Schwarz inequality.

where we have made use of Equations (5.15), (5.13) and (5.9). Recognizing that |cos 8| = 1,
the Schwarz inequality of Equation (5.16) immediately follows from Equation (5.17), More-
over, from the first line of Equation (5.17) we note that |cos #| = 1 if and only if s, = ¢sy,
that is, 5,(f) = c¢s4(t), where ¢ is an arbitrary constant.

The proof of the Schwarz inequality, as presented here, applies to real-valued signals.
It may be readily extended to complex-valued signals, in which case Equation (3.16) is refor-

mulated as
= (J: |51(t}l2dt)(£1 ]sz(t)|2dt) (5.18)

where the equality holds if and only if s,(t) = ¢s,(t), where ¢ is a constant; see Problem 5.9.
It is the complex form of the Schwarz inequality that was used in Chapter 4 to derive the
matched filter. |

2

J: s1(t)s3(t)dt

# GRAM-SCHMIDT ORTHOGONALIZATION PROCEDURE

Having demonstrated the elegance of the geometric representation of energy signals, how
do we justify it in mathematical terms? The answer lies in the Gram-Schmidt orthogon-
alization procedure, for which we need a complete orthonormal set of basis functions. To
proceed with the formulation of this procedure, suppose we have a set of M energy signals
denoted by sy(t), sa(t), . . . , smit). Starting with s,(t) chosen from this set arbitrarily, the
first basis function is defined by

$1(2)

f} =
¢’1( ) ‘\/E_l
where E, is the energy of the signal s,(¢). Then, clearly, we have

s1(t) = VE;¢4(2)
= $11¢(2)

where the coefficient s,; = VE; and ¢,{t) has unit energy, as required.
Next, using the signal s.(t), we define the coefficient s,, as

(5.19)

(5.20)

$31 = J; s2(t)p1{t)dt : (5.21)

We may thus introduce a new intermediate function

g(t) = s3(t) — s214(2) {5.22)
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which is orthogonal to ¢+(#) over the interval 0 = ¢ = T by virtue of Equation (5.21) ang
the fact that the basis function ¢,(t} has unit energy. Now, we are ready to define tp,
second basis function as

g2(t)

¢at) = (5.23)
/L glt)dt

Substituting Equation (5.22) into {5 .23) and simplifying, we get the desired result

$alt) = sz{%—z—%m (524

where E, is the energy of the signal sz(z}. It is clear from Equation (5.23) that

T
f Pitydr = 1
0 .

and from Equation (5.24) that

T
L G (t)do(t)dt = 0

That is to say, ¢4(¢) and ¢(#) form an orthonormal pair, as required.
Continuing in this fashion, we may in general define

i—1

gi(t) = s,{t) — 2 5, () (5.25)

=1

where the coefficients s;; are themselves defined by
T
‘sif - J:) si(t)()bj(t)dta ] = 15 2: “eny i 1 (526)

Equation (5.22) is a special case of Equation (5.25) with i = 2. Note also that fori =1,
the function g;(¢) reduces to s;().
Given the g;(), we may now define the set of basis functions

cbi(t)# -—T'm—, i=1,2,...,N (5.27)
f gile)dt

0

which form an orthonormal set. The dimension N is less than or equal to the number of
given signals, M, depending on one of two possibilities:

» The signals s,(t), s2(t), . - - 5 Sml?) form a linearly independent set, in which cast
N =M.

» The signals 4(2), 52(t)y « - +» S «(2) are not linearly independent, in which case N<M
and the intermediate function g;(¢) is zero for i > N.
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Levels of the 2B1Q Code
Signal

Gray

Symbol Amplitude code
5,(%} -3 00
52(8) —1 01
s3(t) +1 11
54(3) +3 10

Note that the conventional Fourier series expansion of a periodic signal is an example

of a particular expansion of the type described herein. Also, the representation of a band-
limited signal in terms of its samples taken at the Nyquist rate may be viewed as another
sample of a particular expansion of this type. However, two important distinctions should
be made:

1.

The form of the basis functions ¢4(¢), ¢4(2), . . ., dnlt) has not been specified. That
is to say, unlike the Fourier series expansion of a periodic signal or the sampled
representation of a band-limited signal, we have not restricted the Gram-Schmidt
orthogonalization procedure to be in terms of sinusoidal functions or sinc functions
of time.

The expansion of the signal s;(¢) in terms of a finite number of terms is not an
approximation wherein only the first N terms are significant but rather an exact
expression where N and only N terms are significant.

B ExampiLE 5.2 2B1Q Code

The 2B1Q code was described in Chapter 4 as the North American line code for digital
subscriber lines. It represents a quaternary PAM signal as shown in the Gray-encoded alphabet
of Table 5.1. The four possible signals, s,(¢}, s,(¢), 51(t), and s4(2), are amplitude-scaled versions
of a Nyquist pulse. Each signal represents a dibit. We wish to find the vector representation
of the 2B1Q code.

This example is simple enough for us to solve it by inspection. Let ¢,(¢) denote the
Nyquist pulse, normalized to have unit energy. The ¢4(¢) so defined is the only basis function
for the vector representation of the 2B1Q code. Accordingly, the signal-space representation
of this code is as shown in Figure 5.6. It consists of four signal vectors s,, s,, 83, and s, which
are located on the ¢;-axis in a symmetric manner about the origin. In this example, we thus
have M=4and N = 1.

We may generalize the result depicted in Figure 5.6 for the 2B1(} code as follows. The
signal-space diagram of an M-ary pulse-amplitude modulated signal, in general, is one-
dimensional with M signal points uniformly positioned on the only axis of the diagram. <&

é;

5 5; 53
L. !
| i

g
2 e —1 1 2 -
FIGURE 5,6 Signal-space representation of the 2B1Q code.
T
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5.3 Conversion of the Continuous
. AWGN Channel into a Vector Channel

Suppose that the input to the bank of N product integrators or correlators in Figure § 3
is not the transmitted signal s,{¢) but rather the received signal x(¢) defined in accordanc,
with the idealized AWGN channel of Figure 5.2. That is to say,

0=t=T
i=1,2,...,M
where w(t) is a sample function of a white Gaussian noise process W(¢) of zero mean apg

power spectral density No/2. Correspondingly, we find that the output of correlator j, say
is the sample value of a random variable X, as shown by ’

x(t) = s;(t} + wit), { (5.28)

T
x; = L x(t)i{t)dt

, (5.29)
= §; + W i=14,2,....,N

The first component, s, is a deterministic quantity contributed by the transmitted signa]
s;(t); it is defined by

T
s,,~=J sitig;(t)de (5.30)

0

The second component, w, is the sample value of a random variable W, that arises because
of the presence of the channel noise w(z); it is defined by

T _
w; = J wit);(t)dt (5.31)

0

Consider next a new random process X'(#) whose sample function x'(t) is related to
the received signal x(t) as follows:
N

x'(8) = x(t) = 2 xeby(t) (5.32)

. j=1
Substituting Equations (5.28) and (5.29) into (5.32), and then using the expansion of
Equation (5.5), we get

N
x'(8) = s;{t) + wlt) — ; (s5 + w;le;(2)

A
= wit) — 2, widy(?) | (5.3
= 1'(t) -

The sample function x'{t) therefore depends solely on the channel noise w(t). On the basis
of Equations (5.32) and (5.33), we may thus express the received signal as

N
x(t) = 2 x;0;(t) + x'(2)
f"*';rl (5.34)
= 21 x,0,(t) + w' ()
-
Accordingly, we may view w/'(£) as a sort of remainder term that must be included on fhe
right to preserve the equality in Equation (5.34). It is informative to contrast the expansiot
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of the received signal x(t) given in Equation (5.34) with the corresponding expansion of
the transmitted signal s,(t) given in Equation (5.5). The latter expansion is entirely deter-
ministic, whereas that of Equation (5.34).is random (stochastic), which is to be expected.

B STATISTICAL UCHARACTERIZATION OF THE CORRELATOR QUTPUTS

We now wish to develop a statistical characterization of the set of N correlator outputs.
Let X(t) denote the random process, a sample function of which is represented by the
received signal x(t). Correspondingly, let X; denote the random variable whose sample
value is represented by the correlator output x;,j = 1,2, . . ., N. According to the AWGN
model of Figure 5.2, the random process X (¢} is a Gaussian process. It follows therefore
that X; is a Gaussian random variable for all j (see Property 1 of a Gaussian process,
Section 1.8). Hence, X is characterized completely by its mean and variance, which are
determined next.

Let W; denote the random variable represented by the sample value w; produced by
the jth correlator in response to the white Gaussian noise component w(t). The random
variable W, has zero mean, because the noise process W(t) represented by w(t) in the
AWGN model of Figure 5.2 has zero mean by definition. Consequently, the mean of X;
depends only on s;;, as shown by

Hx, = E[X]‘]
[ss * Wil (5.35)
= s; + E[W}]
To find the variance of X;, we note that
o%, = var[X]
= E[(Xi - S;j)Z] (536)

= E[W}]

where the last line follows from Equation (5.29) with x; and w; replaced by X; and W,
respectively. According to Equation (5.31), the random variable W, is defined by

T
W, = | Wi
0

We may therefore expand Equation (5.36) as follows:

ok = E[L W(t)d),f(t)dt‘[) W(u)gbf(u)du]

o | (5.37)
- EUO fo ¢f(t)¢f(“)w(f)w(u)dtdu]
Interchanging the order of integration and expectation:
: T T
7% ““"L fg (1) ; () E[W(t) W(1e) e
(5.38)

T T
:.L fu &, (1); (1) Ry (t, u)dtdu



320

CHAPTER 5 B SIGNAL-SPIPACE ANALYSIS

where Ry (¢, #) is the autocorrelation function of the noise process W(t). Since this Noige
is stationary, Ryw(t, #) depends only on the time difference ¢ — u. Furthermore, singe the
noise W/(¢) is white with a constant power spectral density Ny/2, we may express Rw(t,u)
as follows [see Equation {1.95)]:

N, .
Rylt, u) = ,._59. 8(t — u) (5.39)

Therefore, substituting Equation (5.39) into (5.38), and then using the sifting property of
the delta function 8(t), we get

T T
0'%(1. = % J-o J’O &i(t)p;(u) 8t — w)dtdu

5.40
N, (7 (5.40)
N 20 J’o i(t)dt
Since the ¢;(f) have unit energy, by definition, we finally get the simple result
N,
g% =—  forallj (5.41)

!

This important result shows that all the correlator outputs denoted by X; with j = 1,
2, ..., N, have a variance equal to the power spectral density No/2 of the noise process
Wit). '

Moreover, since the ¢;(¢) form an orthogonal set, we find that the X; are mutually
uncorrelated, as shown by

cov[X;Xgl = E[(X; — px}Xe — #ix,)]
= E[(X; — s;}(Xe — su)]

T T
= E[ L Wit} (£)dt L W(u)qbk(u)du:|
T T
= [ | aieRrute, wdrds (542
0 0
T T '
=20 [ [ grsum ote — uidsdu

N, [* .
=5 J.O ¢ (t) b (2)dt
= 0, j#*k

Since the X; are Gaussian random variables, Equation (5.42) implies that they are also
statistically independent (see Property 4 of a Gaussian Process, Section 1.8}.
Define the vector of N random variables
X

X
X=|". (5.43)

XN
whose elements are independent Gaussian random variables with mean values equal 105
and variances equal to Ny/2. Since the elements of the vector X are statistically indepef”
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dent, we may express the conditional probability density function of the vector X, given
that the signal s,(t) or correspondingly the symbol m; was transmitted, as the product of
the conditional probability density functions of its individual elements as shown by

N
fxx[my = 11 fxfwlmyy i=1,2,....M (5.44)

where the vector x and scalar x; are sample values of the random vector X and random
variable X, respectively. The vector x is called the observation vector; correspondingly,
x; is called an observable element. Any channel that satisfies Equation (5.44) is called a
memoryless channel. )

Since each X is a Gaussian random variable with mean s; and variance Ny/2, we
have

1 1 i=1,2,...,N
Fxlx;|m;) = VN, exp[—ﬁo (x; — Sif)2:|a i=1,2,....M (5.45)
Therefore, substituting Equation {5.45} into (5.44} yiclds
N
fx(x‘ms) = (WNO)_ND- EXP[_Ni Z (x,f - Sij)21|: i= 13 2'9 rrry M (5'46)
' 0 i=1

It is now clear that the elements of the random vector X completely characterize the
summation term 2,X;¢;(t), whose sample value is represented by the first term in Equation
(5.34). However, there remains the noise term 1'{¢) in this equation, which depends only
on the channel noise w(t). Since the noise process W(t) represented by w/(t) is Gaussian
with zero mean, it follows that the noise process W (z) represented by the sample function
w'(t) is also a zero-mean Gaussian process. Finally, we note that any random variable
W'(2,), say, derived from the noise process W'(¢) by sampling it at time f;, is in fact
statistically independent of the set of random variables {X}}; that is to say (see Problem
5.10),

i=1,2,...,N

5.47
0=t =T ( )

E[X;W'{t:)] = 0, {
Since any random variable based on the remainder noise process W'(z) is independent of
the set of random variables {X}} as well as the set of transmitted signals {s;(¢)}, Equation
(5.47) states that the random variable W'(z,} is irrelevant to the decision as to which
particular signal was actually transmitted. In other words, the correlator outputs deter-
mined by the received signal x(¢) are the only data that are useful for the decision-making
process and, hence, represent sufficient statistics for the problem at hand. By definition,
sufficient statistics summarize the whole of the relevant information supplied by an ob-
servation vector.
We may now summarize the results presented in this section by formulating the
theorem of irrelevance:

Insofar as signal detection in additive white Gaussian noise is concerned, only the
projections of the noise onto the basis functions of the signal set {s;(£)}}, affects
the sufficient statistics of the detection problem; the remainder of the noise is
irrelevant. ‘

As a corollary to this theorem, we may state that the AWGN channel of Figure 5.2 is
equivalent to an N-dimensional vector channel described by the observation vector

X =8 +w, i=1,2,..., M {5.48)
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where the dimension N is the number of basis functions involved in formulating the signy|
vector s;. The individual components of the signal vector s; and noise vector w are defined
by Equations (5.6) and (5.31), respectively. The theorem of irrelevance and its corollary
are indeed basic to the understanding of the signal detection problem as described nex,

5.4 Likelihood Funciions

The conditional probability density functions fx(x|m), i = 1, 2,..., M, are the very
characterization of an AWGN channel. Their derivation leads to a functional dependence
on the observation vector x, given the transmitted message symbol ;. However, at the
receiver we have the exact opposite situation: We are given the observation vector x and
the requirement is to estimate the message symbol s that is responsible for generating x,
To emphasize this latter viewpoint, we introduce the idea of a likelibood function, denoted
by L{m;,) and defined by

L(mx) = fx(ximi): t = 1: 2’: te ey M (5-49)

It is important however to recognize that although the L(m,} and fx(x|m;) have exactly
the same mathematical form, their individual meanings are different.
In practice, we find it more convenient to work with the log-likelihood function,

denoted by J/(m;) and defined by
Im) =1log Lim), i=1,2,...,M (5.50)

The log-likelihood function bears a one-to-one relationship to the likelihood function for
two reasons:

1. By definition, a probability density function is always nonnegative. it follows there-
fore that the likelihood function is likewise a nonnegative quantity.

2. The logarithmic function is 2 monotonically increasing function of its argument.

The use of Equation (5.46) in (5.50) yields the log-likelihood functions for an AWGN
channel as
{ N

l(mz) - _fN.—O < (xj - Sﬁ)z,_ i= 1, 2, sey M (5.51)
=1

where we have ignored the constant term —(N/2) log(7N,) as it bears no relation what-
soever to the message symbol m;. Note that the s;,7 =1, 2,..., N, are the elements of
the signal vector s; representing the message symbol ;. With Equation (5.51) at our
disposal, we are now ready to address the basic receiver design problem.

5.5 Coherent Detection of Signals in Noise:
Maximum Likelihood Decoding

Suppose that in each time slot of duration T seconds, one of the M possible signals s:()
$3(8), . . ., spt) is transmitted with equal probability, 1/M. For geometric signal represen
tation, the signal s;(t), 7 = 1,2, . . . , M, is applied to a bank of correlators, with a common
input and supplied with an appropriate set of N orthonormal basis functions, The resulting
correlator outputs define the signal vector s;. Since knowledge of the signal vector s i$ 3
good as knowing the transmitted signal s;(z) itself, and vice versa, we may represent s.{f)
by a point in a Euclidean space of dimension N = M. We refer to this point as the frans”
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mitted signal point or message point. The set of message points corresponding to the set
of transmitted signals {s;()}, is called a signal constellation.

However, the representation of the received signal x(¢) is complicated by the presence
of additive noise w/(¢). We note that when the received signal x(¢) is applied to the bank
of N correlators, the correlator outputs define the observation vector x, From Equation
(5.48), the vector x differs from the signal vector s; by the noise vector w whose orientation
is completely random. The noise vector w is completely characterized by the noise w(t);
the converse of this statement, however, is not true. The noise vector w represents that
portion of the noise w(¢) that will interfere with the detection process; the remaining
portion of this noise, denoted by w/'(¢), is tuned out by the bank of correlators.

Now, based on the observation vector x, we may represent the received signal x(t)
by a point in the same Euclidean space used to represent the transmitted signal, We refer
to this second point as the received signal point. The received signal point wanders about
the message point in a completely random fashion, in the sense that it may lie anywhere
inside a Gaussian-distributed “cloud” centered on the message point. This is illustrated in
Figure 5.7a for the case of a three-dimensional signal space. For a particular realization
of the noise vector w {i.e., a particular point inside the random cloud of Figure 5.74), the
relationship between the observation vector x and the signal vector s; is as illustrated in
Figure 5.7b. ' ‘

We are now ready to state the signal detection problem:

Given the observation vector x, perform a mapping from x to an estimate #7 of the
transmitted symbol, #2,, in a way that would minimize the probability of error in
the decision-making process.

Suppose that, given the observation vector x, we make the decision # = #1,. The
probability of error in this decision, which we denote by P,{s,| x), is simply
P.(m; x} = P(s; not sent | x

(m] x) ( x) (5.52)

= 1 — P(m,; sent|x)

The decision-making criterion is to minimize the probability of error in mapping each

given observation vector x into a decision, On the basis of Equation (5.52), we may there-
fore state the optimum decision rule:

Set ?’f’l = ; ].f

S5
P(m; sent|x) = P(my,, sent|x) forallk #i (5-23)

b, )
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Ficure 5.7 [llustrating the effect of noise perturbation, depicted in {(#), on the location of the
received signal point, depicted in (b).
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where k = 1, 2, ..., M. This decision rule is referred to as the maximum a Dosterigy;
probability (MAP) rule.

The condition of Equation (5.53) may be expressed more explicitly in terms of ¢,
a priori probabilities of the transmitted signals and in terms of the likelihood functigp,
Using Bayes’ rule in Equation (5.53), and for the moment ignoring possible ties in ¢,
decision-making process, we may restate the MAP rule as follows:

Set 11 = m1; if

pafxlx|m) (5.54)

TS is maximum for & = 7
Fx(x)
where p, is the a priori probability of transmitting symbol m2,, fx(x|#2,) is the conditiang]
probability density function of the random observation vector X given the transmission
of symbol 11, and fx(x) is the unconditional probability density function of X. In Equation
(5.54) we may note the following:

» The denominator term fx(x) is independent of the transmitted symbol.

# The a priori probability p, = p; when all the source symbols are transmitted with
equal probability.

> The conditional probability density function fx(x|#,} bears a one-to-one relation-
ship to the log-likelihood function {(#2,).

Accordingly, we may restate the decision rule of Equation (5.54) in terms of /(»2,) simply
as follows: '
Set #1 = i lf

I{m,) is maximum for & = i (5.55)

This decision rule is referred to as the maximum likelibood rule, and the device for its
implementation is correspondingly referred to as the maximum likelibood decoder. Ac-
cording to Equation (5.55), a maximum likelihood decoder computes the log-likelihood
functions as metrics for all the M possible message symbols, compares them, and then
decides in favor of the maximum. Thus the maximum likelihood decoder differs from the
maximum z posteriori decoder in that it assumes equally likely message symbols.

It is useful to have a graphical interpretation of the maximum likelihood decision
rule. Let Z denote the N-dimensional space of all possible observation vectors x. We refer
to this space as the observation space. Because we have assumed that the decision rule
must say M1 = m,, wherei = 1,2, ., ., M, the total observation space Z is correspondingly
partitioned into M-decision regions, denoted by Z;, Z,, . .., Zy. Accordingly, we may
restate the decision rule of Equation {5.55) as follows:

Observation vector x lies in region Z; if (5.56)

I(#1,) is maximum for k& = ¢

Aside from the boundaries between the decision regions Zi, Zs, . . . , Zy, it is clear that
this set of regions covers the entire space of possible observation vectors x. We adopt the
convention that all ties are resolved at random; that is, the receiver simply makes a guess.
Specifically, if the observation vector x falls on the boundary between any two decision
regions, Z; and Z,, say, the choice between the two possible decisions #: = m; and st = M
is resolved a priori by the flip of a fair coin. Clearly, the outcome of such an event does
not affect the ultimate value of the probability of error since, on this boundary, the cot-
dition of Equation (5.53) is satisfied with the equality sign.
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The maximum likelihood decision rule of Equation (5.55) or its geometric counter-
part described in Equation (5.56) is of a generic kind, with the channel noise w(t) being
additive as the only restriction imposed on it. We next specialize this rule for the case when
w(t) is both white and Gaussian.

From the log-likelihood function defined in Equation (5.51) for an AWGN channel
we note that /(m;) attains its maximum value when the summation term

N

> (2; — sp;)°

=1

is minimized by the choice & = i, Accordingly, we may formulate the maximum likelihood
decision rule for an AWGN channel as

Observation vector x lies in region Z; if
N (5.57)
> (x; — s)? is minimum for & =
=1

Next, we note from our earlier discussion that (see Equation (5.14) for comparison)

Mz

i
-

2 _. 2

(xf - ski) = ” X — 8 ” (5.58)

7

where || x — s, | is the Euclidean distance between the received signal point and message

point, represented by the vectors x and s,, respectively. Accordingly, we may restate the
decision rule of Equation (5.57) as follows:

Observation vector x lies in region Z; if

5.59
the Euclidean distance | x — s, || is minimum for k& = i (5:59)

Equation (5.59) states that the maximum likelibood decision rule is simply to choose the
message point closest to the received signal point, which is intuitively satisfying.

In practlce the need for squarers in the decision rule of Equation (5.59) is avoided
by recognizing that

'Mz

i
(=1

— sg) 2 x}—2 2 x5 + E sk (5.60)

7 =1

The first summation term of this expansion is lndependent of the index k and may therefore
be ignored. The second summation term is the inner product of the observation vector x
and signal vector s;. The third summation term is the energy of the transmitted signal
sk (£). Accordingly, we may formulate a decision rule equivalent to that of Equation {5.59)
as follows:

Observation vector x lies in region Z, if

1 (5.61)
2 XiSpj — Ek is maximum for & = i
where E, is the energy of the transmitted signal s, (£):
N
Ey =2, s} ' (5.62)
=1

From Equation (5.61) we deduce that, for an AWGN channel, the decision regions
are regions of the N-dimensional observation space Z, bounded by linear [(N — 1)~
dimensional hyperplane] boundaries. Figure 5.8 shows the example of decision regions for
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Decision
boundary

Region

Decision

FiGURE 5.8 [llustrating the partitioning of the observation space into decision regions for the
case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely.

M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal
energy, E, and equal probability.

5.6 Correlation Receiver

From the material presented in the previous sections, we find that for an AWGN channel
and for the case when the transmitted signals s;(¢), s, . . . , sm(#) are equally likely, the
optimum receiver consists of two subsystems, which are detailed in Figure 5.9 and de-
scribed here:

1.

The detector part of the receiver is shown in Figure 5.9a. It consists of a bank of M
product-integrators or correlators, supplied with a corresponding set of coherent
reference signals or orthonormal basis functions ¢ 4(2), $2(2), . .., @nf(t) thar are
generated locally. This bank of correlators operates on the received signal x{f)
0 = ¢t = T, to produce the observation vector x. '

The second part of the receiver, namely, the signal transmission decoder is shownin
Figure 5.9b. It is implemented in the form of a maximum-likelihood decoder that
operates on the observation vector x to produce an estimate, 7, of the transmitted
symbol 71, i = 1, 2,..., M, in a way that would minimize the average probability
of symbol error. In accordance with Equation (5.61), the N elements of the obser
vation vector X are first multiplied by the corresponding N elements of each of the
M signal vectors sy, s, - . . , Sy, and the resulting products are successively summed
in accumulators to form the corresponding set of inner products {x”s |k =1,2,..+
M}. Next, the inner products are corrected for the fact that the transmitted sig
energies may be unequal. Finally, the largest in the resulting set of numbers is selected;
and an appropriate decision on the transmitted message is made.

The optimum receiver of Figure 5.9 is commonly referred to as a correlation receiver.
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FIGURE 5.9 (a) Detector or demodulator. (b) Signal transmission decoder.

2 EQUIVALENCE OF CORRELATION AND MATCHED FILTER RECEIVERS

The detector shown in Figure 5.94 involves a set of correlators. Alternatively, we may use
a corresponding set of smaiched filters to build the detector; the matched filter and its
properties were considered in Section 4,2. To demonstrate the equivalence of a correlator
and a matched filter, consider a linear time-invariant filter with impulse response &,(t).
With the received signal x(#) used as the filter input, the resulting filter output, y,(z), is
defined by the convolution integral: '

yi(t) = f ) x(7)b;(t — T)dT (5.63)

-0
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FIGURE 5.10 Detector part of matched filter receiver; the signal transmission decoder is as
shown in Fig. 5.5b.

From the definition of a matched filter presented in Section 4.2, we recall that the impulse
response b;(t) of a linear time-invariant filter matched to an input signal ¢;(¢) is a time-
reversed and delayed version of the input ¢;(¢). Suppose that we set

hi(t} = ¢{T — ¥) {5.64)
Then the resulting filter output is

yi(t) = J‘i ()T — t + 7)dr (5.65)

Sampling this output at time ¢z = T, we get

y(T) = | x(rdy(ndr
Since, by definition, ¢;(t) is zero outside the interval 0 = z = T, we find that y;(T) isin
actual fact the jth correlator output x; produced by the received signal x(z) in Figure 5.9a,
as shown by

T

yi(T) = .[o x(t)(T)dT ' _ (5.66)

Accordingly, the detector part of the optimum receiver may also be implemented using 2
bank of matched filters, as shown in Figure 5.10. It is important to note, however, that
the output of each correlator in Figure 5.94 is equivalent to the output of a corresponding
matched filter in Figure 5.10 orly when that output is sampled at time ¢ = T.

§ 5.7 Probability of Error

To complete the statistical characterization of the correlation receiver depicted in Figur®
5.9, we need to evaluate its noise performance. To do so, suppose that the observatiod
space Z is partitioned, in accordance with the maximum likelihood decision rule, into?
set if M regions {Z}3,. Suppose also that symbol m; (o, equivalently, signal vector 5) 8
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transmitted, and an observation vector x is received. Then an error occurs whenever the
received signal point represented by x does not fall inside region Z; associated with the
message point represented by s;. Averaging over all possible transmitted symbols, we
readily see that the average probability of symbol error, P, is

P(x does not lie in Z;|m; sent)

g]»—L uM

P
M
Z {(x does not lie in Z |m; sent) (5.67)

M
= z (x lies in Z;|m; sent)

where we have used standard notation to denote the probability of an event and the
conditional probability of an event. Since x is the sample value of random vector X, we
may rewrite Equation (5.67) in terms of the likelihood function {when #; is sent) as
follows:

lfM
g=1—ﬁg”;hmmmﬁ (5.68)

For an N-dimensional observation vector, the integral in Equation (3.68) is likewise
N-dimensional.

# INVARIANCE OF THE PROBABILITY OF ERROR TO
ROTATION AND TRANSLATION

The way in which the observation space Z is partitioned into the set of regions Z,, Z,, . . .,
Z, in the maximum likelihood detection of a signal in additive white Gaussian noise, is
uniquely defined by the signal constellation under study. Accordingly, changes in the ori-
entation of the signal constellation with respect to both the coordinate axes and origin of
the signal space do #not affect the probability of symbol error P, defined in Equation (3.68).
This result is a consequence of two facts:

1. In maximum likelihood detection, the probability of symbol error P, depends solely
on the relative Euclidean distances between the message points in the constellation.

2. The additive white Gaussian noise is spherically symmetric in all directions in the
signal space.

. Consider first the invariance of P, with respect to rotation. The effect of a rotation
applied to all the message points in a constellation is equivalent to multiplying the
N-dimensional signal vector s; by an N-by-N orthonormal matrix denoted by Q for all 4.
The matrix Q satisfies the condition

QQ' =1 (5.69)

where I is the identity matrix whose diagonal elements are all unity and its off-diagonal
elements are all zero. Note that according to Equation (5.69), the inverse of a real-valued
orthonormal matrix is equal to its transposed form. Thus the signal vector s; is replaced
by its rotated version

Sirotate = Q853 F=1,2,..., M (5.70)
Correspondingly, the N-by-1 noise vector w is replaced by its rotated version
Wromaee = QW (5.71)
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However, the statistical characteristics of the noise vector are unaffected by this rotatig
for the following reasons: n

» From Chapter 1 we recall that a linear combination of Gaussian random variahle,
is also Gaussian. Since the noise vector w is Gaussian, by assumption, it follows that
the rotated noise vector W, ... is also Gaussian.

» Since the noise vector w has zero mean, the rotated noise vector Wrocae also has zep,
mean, as shown by

E[Wiore] = EIQW]
= QE[w] 572
=0

» The covariance matrix of the noise vector w is equal to (No/2)I, where N/2 is the
power spectral density of the AWGN w/(t); that is,

.~ N
Elww?] = 701 (5.73)

Hence, the covariance matrix of the rotated noise vector W g is
E[wrotatew;j;rate] = E[QW(QW)T]
= E[Qww' Q]
= QE[ww'|Q" (5.74)
_ No
-2
- No
2
where in the last two lines we have made use of Equations (5.73) and (5.69).

In light of these observations, we may express the observation vector for the rotated
signal constellation as

Xeomre = Q8; + W, i=1,2,...., M {5.75)
From Equation (5.59) we know that the decision rule for maximum likelihood detection

is based on the Euclidean distance from the observation vector X, to the rotated signal
VeCtor S; orare = Q. Comparing Equation (5.75) to Equation (5.48), we readily see that

” Xrotate — Sijrotate ” = ” X —8; “ foralli {576)

We may therefore formally state the principle of rotational invariance as follows:

If a signal constellation is rotated by an orthonormal transformation, that is,
S5irotace = Qs;‘: i= 1, 2-, aas M

where Q is an orthonormal matrix, then the probability of symbol error P, incurred
in maximum likelihood signal detection over an AWGN channel is completely
unchanged.

We illustrate this principle with an example. The signal constellation shown in Figur®
$.11b is the same as that of Figure 5.11a, except that it has been rotated through 4
degrees. Although these two constellations do indeed look different, the principle of 1
tational invariance tells us immediately that the P, is the same for both of them.
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FIGURE 5.11 A pair of signal constellations for illustrating the principle of rotational invariance.

Consider next the issue of invariance to translation. Suppose all the message points
in a signal constellation are translated by a constant vector amount a, as shown by

Sitranstae = S — @, i=1,2,..., M (5.77)

The observation vector is correspondingiy translated by the same vector amount, as shown
by

Xranslare = X — @ (5.78)

From Equations (5.77) and {5.78} we see that the translate a is common to both the

translated signal vector s, and translated observation vector x. We therefore immediately

deduce that
“ Xtranslal:ﬁ . Si,translﬂ[c H = || X Si ” for a].l 3 (5'79)

and thus formulate the principle of translational invariance as follows:

If a signal constellation is translated by-';a constant vector amount, then the prob-
ability of symbol error P, incurred in maximum likelihood signal detection over an
AWGN channel is completely unchanged.

As an example, consider the two signal constellations shown in Figure 5.12, which
pertain to a pair of different 4-level PAM signals. The constellation of Figure 5.125 is the
same as that of Figure 5.12a, except for a translation of 3a/2 to the right along the
¢,-axis. The principle of translational invariance says that the P, is the same for both of
these constellations.

 MINIMUM ENERGY SIGNALS

A useful application of the principle of translational invariance is in the translation of a
given signal constellation in such a way that the average energy is minimized. To explore

—l————— - - ¢ : 1

~3ai2 —afz 0 al? 3as2 a

| ]
L]
-]
iy

] (B

FIGURE 5.12 A pair of signal constellations for illustrating the principle of translational
invariance.
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this issue, consider a set of symbols m2y, 2., . . . , #1y represented by the signal vectorg .
S2, . - » Sar, Tespectively. The average energy of this signal constellation translated by
vector amount a is

1y
a

ar
%ﬁagslate = 21 ” 5 — a ” Zpi (5-80)
where p; is the probability that symbol #; is emitted by the source of information, T,
squared Euclidean distance between s; and a is expanded as
Is; —al?=[sl*—2a"; + [|a]”

We may therefore rewrite Equation (5.80) in the expanded form
M

M M
C‘gtransiﬂre = z ” §; ” sz' -2 “ aTSz'pi + ” a || ? El pi
i= i=

=1
(5.81
=% —2a"E[s] + [a]* )
where % is the average energy of the original signal constellation, and
M
E[s] = 21 SiD; (5.82)

Differentiating Equation {(5.81) with respect to the vector a and then setting the result
equal to zero, we readily find that the minimizing translate is

Amin ™ E[S] (5'83)
The minimum average energy of the signal constellation translated in this way is
c(gt:ransiate,min =%~ “ Admin " ? (584}

We may now state the procedure for finding the minimum energy translate:

Given a signal constellation {s,}},, the corresponding signal constellation with min-
imum average energy is obtained by subtracting from each signal vector s; in the
given constellation an amount equal to the constant vector E[s], where E[s] is de-
fined by Equation (5.82).

Recalling that the energy (or power) needed for signal transmission is a primary resource,
the minimum energy translate provides a principled method for translating a signal con-
stellation of interest so as to minimize the energy requirement. For example, the constel-
lation of Figure §5.12a has minimum average energy, whereas that of Figure 5.125 does
not.

& UNION BOUND ON THE PROBABILITY OF ERROR”

For AWGN channels, the formulation of the average probability of symbol error, P, i8
conceptually straightforward. We simply write P, in integral form by substituting Equation
{5.46) into Equation {5.68). Unfortunately, however, numerical computation of the inte-
gral is impractical, except in a few simple (but important) cases. To overcome this com-
putational difficulty, we may resort to the use of bounds, which are usually adequafe ©
predict the signal-to-noise ratio (within a decibel or so) required to maintain a prescribe

error rate. The approximation to the integral defining P, is made by simplifying the integral
or simplifying the region of integration. In the sequel, we use the latter procedure to de-
velop a simple vet useful upper bound called the union bound as an approximation t0 the
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average probability of symbol error for a set of M equally likely signals (symbols) in an
AWGN channel.

Let A, with (i, k) = 1, 2, ..., M, denote the event that the observation vector x is
closer to the signal vector s than to s, when the symbol #1; (vector s;) is sent. The con-
ditional probability of symbol error when symbol #; is sent, P.(m;), is equal to the prob-
ability of the union of events, Ay, An, ...y Aii—1, Aije1s ++ «» Ay From probability
theory we know that the probability of a finite union of events is overbounded by the sum
of the probabilities of the constituent events. We may therefore write

M

Pe(mi) = 2 P(Aik)s i= 15 29 e M (5~85)
k=1
feai

This relationship is illustrated in Figure 5.13 for the case of M = 4. In Figure 5.134, we
show the four message points and associated decision regions, with the point s; assumed
to represent the transmitted symbol. In Figure 5.135, we show the three constituent signal-
space descriptions where, in each case, the transmitted message point s; and one other
message point are retained. According to Figure 5.134 the conditional probability of sym-
bol error, P,(m;), is equal to the probability that the observation vector x lies in the shaded
region of the two-dimensional signal-space diagram. Clearly, this probability is less than
the sum of the probabilities of the three individual events that x lies in the shaded regions
of the three constituent signal spaces depicted in Figure 5.135.

It is important to note that, in general, the probability P(A;) is different from the
probability P(s#2 = my |m,). The latter is the probability that the observation vector x is

&1

(a)

@

FiGuge 5.13 Illustrating the union bound. (a) Constellation of four message points. (b) Three
constellations with 2 commoen message point and one other message point retained from the origi-
nal constellation. '
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closer to the signal vector s, than every other, when s; (or ;) is sent. On the other hang
the probability P(A,;) depends on only two signal vectors, s; and s,. To emphasize thi;
difference, we rewrite Equation (5.85) by adopting P(s;, s,) in place of P{A;). We thg
write

M

Pe(mi) = .&E P2(St'9 Sk)b 7= 1: 23 MR M (586)

o |
The probability P,(s;, s,) is called the pairwise error probability in that if a data transy;,.
sion systern uses only a pair of signals, s; and s, then P,(s;, s¢) is the probability of the
receiver mistaking s; for s;.

Consider then a simplified digital communication system that involves the use of ty,
equally likely messages represented by the vectors s; and sy. Since white Gaussian noise jg
identically distributed along any set of orthogonal axes, we may temporarily choose the
first axis in such a set as one that passes through the points s; and s;; for three examples,
see Figure 5.13b. The corresponding decision boundary is represented by the bisector thyy
is perpendicular to the line joining the points s; and s,. Accordingly, when the symbo]
(vector s;) is sent, and if the observation vector x lies on the side of the bisector where s,:
lies, an error is made. The probability of this event is given by

P.(s;, s;) = P(x is closer to s, than s;, when s; is sent)

= 1 2 (5.87)
= 2 VN exp(——ﬁ‘;) dv
where d;, is the Euclidean distance between s; and s,; that is,
die = | s — se (5.88)

From the definition of the complementary error function, we have
5 =
erfc(u) = e J; exp(—2°) dz

Thus, in terms of this function, with z set equal to v/ Ny, we find that Equation (5.87)
takes on the compact form

Puls,, sp) = % er'fc(zj“‘m) (5.89)
Substituting Equation (5.89) into Equation {5.86), we get
P.m;) = 1 § erfc(ﬁ), i=1,2,..., M (5.90)
2 VN,

The probability of symbol error, averaged over all the M symbols, is therefore overboun ded
as follows:

=1 {5.91)

where p; is the probability of transmitting symbol #1;.
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There are two special forms of Equation (5.91) that we will find useful in Chapter 6
on passband data transmission:

1. Suppose that the signal constellation is circularly symmetric about the origin. Then
the conditional probability of error P,(#,) is the same for all i, in which case Equation
(5.91) reduces to

M
P, = % ’;1 erfc(zjiz) for all i (5.92)
ki

2. Define the minimum distance of a signal constellation, d.;,, as the smallest Euclidean
distance between any two transmitted signal points in the constellation, as shown by

dmin = min dy for all i and & (5.93)

- E T

Then, recognizing that the complementary error function erfc(x) is a monotonically de-
creasing function of its argument #, we may write

erfc(zd—\/i;_lo) = erfc(zi'/“;“?o) for all  and & (5.94)

We may therefore, in general, simplify the bound on the average probability of symbol
error in Equation (5.91) as ' '

(M - 1) dmin
P =— .
= 3 erfc(2 VN, (5.95)
The complementary error function is itself bounded as®
d i 1 di;
jneling S _ Mmin 5_96
erfc (2 _No) v exp( —-—-4N0) (5.96)
Accordingly, we may further simplify the union bound on P, given in Equation (5.95) as
(M-1) dain
P =——- - 97

Equation (5.97) shows that for a prescribed AWGN channel, the average probability of
symbol error P, decreases exponentially as the squared minimum distance, dZ;,.

BIT VERSUS SYMBOL ERROR PROBABILITIES

Thus far, the only figure of merit we have used to assess the noise performance of a digital
passband transmission system has been the average probability of symbol error. This figure
of merit is the natural choice when messages of length » = log, M are transmitted, such
as alphanumeric symbols. However, when the requirement is to transmit binary data such
as digital computer data, it is often more meaningful to use another figure of merit called
the bit error rate (BER). Although, in general, there are no unique relationships berween
these two figures of merit, it is fortunate that such relationships can be derived for two
cases of practical interest, as discussed next.
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Case 1

In the first case, we assume that it is possible to perform the mapping from bip,
to M-ary symbols in such a way that the two binary M-tuples corresponding to any pair
of adjacent symbols in the M-ary modulation scheme differ in only one bit position, “This
mapping constraint is satisfied by using a Gray code. When the probability of symp
error P, is acceptably small, we find that the probability of mistaking one symbo] £,
either one of the two “necarest” symbols is much greater than any other kind of symho
error. Moreover, given a symbol error, the most probable number of bit errors is One,
subject to the aforementioned mapping constraint. Since there are log, M bits per symbol,
it follows that the average probability of symbol error is related to the bit error rate 4
follows:

log;M
P, = P( |J {#th bit is in error})
=1

log, M

= 2 P{ith bit is in error) (5.97)
= lggz M - (BER)
We also note that
P, = P(ith bit is in error) = BER {5.98)
It follows therefore that the bit error rate is bounded as follows:
P,
log,M

< BER =< P, (5.99)

Case 2

Let M = 2K, where K is an integer. We assume that all symbol errors are equally
likely and occur with probability
Pe _ P
M-1 2K-1

where P, is the average probability of symbol error. What is the probability that the ith
bit in a symbol is in error? Well, there are 2X~! cases of symbol error in which this
particular bit is changed, and there are 2X ~* cases in which it is not changed. Hence, the
bit error rate is

P 5. I

Note that for large M, the bit error rate approaches the limiting value of P./2. The same
idea described here also shows that bit errors are not independent, since we have

K—2

2K —1

P(ith and jth bits are in error) = P, # (BER)



